- Installation
- Documentation
- Overview
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Go
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- Configuration
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH/DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT/IMPORT DATABASE
- INSERT
- PIVOT
- Profiling
- SELECT
- SET/RESET
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Utility Functions
- Aggregate Functions
- Constraints
- Indexes
- Information Schema
- Metadata Functions
- Keywords and Identifiers
- Samples
- Window Functions
- PostgreSQL Compatibility
- Extensions
- Overview
- Official Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- JSON
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network & Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS/S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Import
- Schema
- Indexing
- Environment
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building
- Overview
- Build Instructions
- Build Configuration
- Building Extensions
- Supported Platforms
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
Handling Concurrency
DuckDB has two configurable options for concurrency:
- One process can both read and write to the database.
- Multiple processes can read from the database, but no processes can write (
access_mode = 'READ_ONLY'
).
When using option 1, DuckDB supports multiple writer threads using a combination of MVCC (Multi-Version Concurrency Control) and optimistic concurrency control (see Concurrency within a Single Process), but all within that single writer process. The reason for this concurrency model is to allow for the caching of data in RAM for faster analytical queries, rather than going back and forth to disk during each query. It also allows the caching of functions pointers, the database catalog, and other items so that subsequent queries on the same connection are faster.
DuckDB is optimized for bulk operations, so executing many small transactions is not a primary design goal.
Concurrency within a Single Process
DuckDB supports concurrency within a single process according to the following rules. As long as there are no write conflicts, multiple concurrent writes will succeed. Appends will never conflict, even on the same table. Multiple threads can also simultaneously update separate tables or separate subsets of the same table. Optimistic concurrency control comes into play when two threads attempt to edit (update or delete) the same row at the same time. In that situation, the second thread to attempt the edit will fail with a conflict error.
Writing to DuckDB from Multiple Processes
Writing to DuckDB from multiple processes is not supported automatically and is not a primary design goal (see Handling Concurrency).
If multiple processes must write to the same file, several design patterns are possible, but would need to be implemented in application logic. For example, each process could acquire a cross-process mutex lock, then open the database in read/write mode and close it when the query is complete. Instead of using a mutex lock, each process could instead retry the connection if another process is already connected to the database (being sure to close the connection upon query completion). Another alternative would be to do multi-process transactions on a MySQL, PostgreSQL, or SQLite database, and use DuckDB's MySQL, PostgreSQL, or SQLite extensions to execute analytical queries on that data periodically.
Additional options include writing data to Parquet files and using DuckDB's ability to read multiple Parquet files, taking a similar approach with CSV files, or creating a web server to receive requests and manage reads and writes to DuckDB.
Optimistic Concurrency Control
DuckDB uses optimistic concurrency control, an approach generally considered to be the best fit for read-intensive analytical database systems as it speeds up read query processing. As a result any transactions that modify the same rows at the same time will cause a transaction conflict error:
Transaction conflict: cannot update a table that has been altered!
Tip A common workaround when a transaction conflict is encountered is to rerun the transaction.