- Installation
- Documentation
- Overview
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Go
- Java
- Julia
- Node.js
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- ADBC
- ODBC
- Configuration
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH/DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT/IMPORT DATABASE
- INSERT
- PIVOT
- Profiling
- SELECT
- SET/RESET
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Statement
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- Functions
- Overview
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Utility Functions
- Aggregate Functions
- Constraints
- Indexes
- Information Schema
- Metadata Functions
- Keywords and Identifiers
- Samples
- Window Functions
- PostgreSQL Compatibility
- Extensions
- Overview
- Official Extensions
- Working with Extensions
- Versioning of Extensions
- Arrow
- AutoComplete
- AWS
- Azure
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- ICU
- inet
- jemalloc
- JSON
- MySQL
- PostgreSQL
- Spatial
- SQLite
- Substrait
- TPC-DS
- TPC-H
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- Network & Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS/S3
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Import
- Schema
- Indexing
- Environment
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Development
- DuckDB Repositories
- Testing
- Overview
- sqllogictest Introduction
- Writing Tests
- Debugging
- Result Verification
- Persistent Testing
- Loops
- Multiple Connections
- Catch
- Profiling
- Release Calendar
- Building
- Overview
- Build Instructions
- Build Configuration
- Building Extensions
- Supported Platforms
- Troubleshooting
- Benchmark Suite
- Internals
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
Loops can be used in sqllogictests when it is required to execute the same query many times but with slight modifications in constant values. For example, suppose we want to fire off 100 queries that check for the presence of the values 0..100
in a table:
# create the table 'integers' with values 0..100
statement ok
CREATE TABLE integers AS SELECT * FROM range(0, 100, 1) t1(i);
# verify individually that all 100 values are there
loop i 0 100
# execute the query, replacing the value
query I
SELECT count(*) FROM integers WHERE i = ${i};
----
1
# end the loop (note that multiple statements can be part of a loop)
endloop
Similarly, foreach
can be used to iterate over a set of values.
foreach partcode millennium century decade year quarter month day hour minute second millisecond microsecond epoch
query III
SELECT i, date_part('${partcode}', i) AS p, date_part(['${partcode}'], i) AS st
FROM intervals
WHERE p <> st['${partcode}'];
----
endloop
foreach
also has a number of preset combinations that should be used when required. In this manner, when new combinations are added to the preset, old tests will automatically pick up these new combinations.
Preset | Expansion |
---|---|
<compression> |
none uncompressed rle bitpacking dictionary fsst chimp patas |
<signed> |
tinyint smallint integer bigint hugeint |
<unsigned> |
utinyint usmallint uinteger ubigint uhugeint |
<integral> |
<signed> <unsigned> |
<numeric> |
<integral> float double |
<alltypes> |
<numeric> bool interval varchar json |
Use large loops sparingly. Executing hundreds of thousands of SQL statements will slow down tests unnecessarily. Do not use loops for inserting data.
Data Generation without Loops
Loops should be used sparingly. While it might be tempting to use loops for inserting data using insert statements, this will considerably slow down the test cases. Instead, it is better to generate data using the built-in range
and repeat
functions.
-- Create the table integers with the values [0, 1, .., 98, 99]
CREATE TABLE integers AS SELECT * FROM range(0, 100, 1) t1(i);
-- Create the table strings with 100X the value "hello"
CREATE TABLE strings AS SELECT 'hello' AS s FROM range(0, 100, 1);
Using these two functions, together with clever use of cross products and other expressions, many different types of datasets can be efficiently generated. The RANDOM()
function can also be used to generate random data.
An alternative option is to read data from an existing CSV or Parquet file. There are several large CSV files that can be loaded from the directory test/sql/copy/csv/data/real
using a COPY INTO
statement or the read_csv_auto
function.
The TPC-H and TPC-DS extensions can also be used to generate synthetic data, using e.g. CALL dbgen(sf = 1)
or CALL dsdgen(sf = 1)
.