- Installation
- Guides
- Overview
- SQL Features
- Data Import & Export
- CSV Import
- CSV Export
- Parquet Import
- Parquet Export
- Query Parquet
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- JSON Import
- JSON Export
- Excel Import
- Excel Export
- SQLite Import
- Postgres Import
- Meta Queries
- Python
- Install
- Execute SQL
- Jupyter Notebooks
- SQL on Pandas
- Import From Pandas
- Export To Pandas
- SQL on Arrow
- Import From Arrow
- Export To Arrow
- Relational API on Pandas
- Multiple Python Threads
- DuckDB with Ibis
- DuckDB with Fugue
- DuckDB with Polars
- DuckDB with Vaex
- DuckDB with DataFusion
- DuckDB with fsspec filesystems
- SQL Editors
- Data Viewers
- Documentation
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- Insert Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configure
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Java
- Julia
- Node.js
- ODBC
- Python
- Overview
- Data Ingestion
- Result Conversion
- DB API
- Relational API
- Function API
- Types API
- API Reference
- R
- Rust
- Scala
- Swift
- Wasm
- SQL
- Introduction
- Statements
- Overview
- Alter Table
- Attach/Detach
- Call
- Checkpoint
- Copy
- Create Macro
- Create Schema
- Create Sequence
- Create Table
- Create View
- Delete
- Drop
- Export
- Insert
- Pivot
- Select
- Set/Reset
- Unpivot
- Update
- Use
- Vacuum
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT
- SAMPLE
- UNNEST
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Data Types
- Overview
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Map
- NULL Values
- Numeric
- Struct
- Text
- Timestamp
- Union
- Expressions
- Functions
- Overview
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp With Time Zone Functions
- Utility Functions
- Aggregates
- Configuration
- Constraints
- Indexes
- Information Schema
- Metadata Functions
- Pragmas
- Samples
- Window Functions
- Extensions
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
The CASE
statement performs a switch based on a condition. The basic form is identical to the ternary condition used in many programming languages (CASE WHEN cond THEN a ELSE b END
is equivalent to cond ? a : b
). With a single condition this can be expressed with IF(cond, a, b)
.
CREATE OR REPLACE TABLE INTEGERS as SELECT UNNEST([1, 2, 3]) as i;
SELECT i, CASE WHEN i>2 THEN 1 ELSE 0 END AS test FROM integers;
-- 1, 2, 3
-- 0, 0, 1
-- this is equivalent to:
SELECT i, IF(i > 2, 1, 0) AS test FROM integers;
-- 1, 2, 3
-- 0, 0, 1
The WHEN cond THEN expr
part of the CASE
statement can be chained, whenever any of the conditions returns true for a single tuple, the corresponding expression is evaluated and returned.
CREATE OR REPLACE TABLE INTEGERS as SELECT UNNEST([1, 2, 3]) as i;
SELECT i, CASE WHEN i=1 THEN 10 WHEN i=2 THEN 20 ELSE 0 END AS test FROM integers;
-- 1, 2, 3
-- 10, 20, 0
The ELSE
part of the CASE
statement is optional. If no else statement is provided and none of the conditions match, the CASE
statement will return NULL
.
CREATE OR REPLACE TABLE INTEGERS as SELECT UNNEST([1, 2, 3]) as i;
SELECT i, CASE WHEN i=1 THEN 10 END AS test FROM integers;
-- 1, 2, 3
-- 10, NULL, NULL
After the CASE
but before the WHEN
an individual expression can also be provided. When this is done, the CASE
statement is essentially transformed into a switch statement.
CREATE OR REPLACE TABLE INTEGERS as SELECT UNNEST([1, 2, 3]) as i;
SELECT i, CASE i WHEN 1 THEN 10 WHEN 2 THEN 20 WHEN 3 THEN 30 END AS test FROM integers;
-- 1, 2, 3
-- 10, 20, 30
-- this is equivalent to:
SELECT i, CASE WHEN i=1 THEN 10 WHEN i=2 THEN 20 WHEN i=3 THEN 30 END AS test FROM integers;