- Installation
- Guides
- Overview
- SQL Features
- Data Import & Export
- CSV Import
- CSV Export
- Parquet Import
- Parquet Export
- Query Parquet
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- JSON Import
- JSON Export
- Excel Import
- Excel Export
- SQLite Import
- Postgres Import
- Meta Queries
- Python
- Install
- Execute SQL
- Jupyter Notebooks
- SQL on Pandas
- Import From Pandas
- Export To Pandas
- SQL on Arrow
- Import From Arrow
- Export To Arrow
- Relational API on Pandas
- Multiple Python Threads
- DuckDB with Ibis
- DuckDB with Fugue
- DuckDB with Polars
- DuckDB with Vaex
- DuckDB with DataFusion
- DuckDB with fsspec filesystems
- SQL Editors
- Data Viewers
- Documentation
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- Insert Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configure
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Java
- Julia
- Node.js
- ODBC
- Python
- Overview
- Data Ingestion
- Result Conversion
- DB API
- Relational API
- Function API
- Types API
- API Reference
- R
- Rust
- Scala
- Swift
- Wasm
- SQL
- Introduction
- Statements
- Overview
- Alter Table
- Attach/Detach
- Call
- Checkpoint
- Copy
- Create Macro
- Create Schema
- Create Sequence
- Create Table
- Create View
- Delete
- Drop
- Export
- Insert
- Pivot
- Select
- Set/Reset
- Unpivot
- Update
- Use
- Vacuum
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT
- SAMPLE
- UNNEST
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Data Types
- Overview
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Map
- NULL Values
- Numeric
- Struct
- Text
- Timestamp
- Union
- Expressions
- Functions
- Overview
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp With Time Zone Functions
- Utility Functions
- Aggregates
- Configuration
- Constraints
- Indexes
- Information Schema
- Metadata Functions
- Pragmas
- Samples
- Window Functions
- Extensions
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
The CASE statement performs a switch based on a condition. The basic form is identical to the ternary condition used in many programming languages (CASE WHEN cond THEN a ELSE b END is equivalent to cond ? a : b). With a single condition this can be expressed with IF(cond, a, b).
CREATE OR REPLACE TABLE INTEGERS as SELECT UNNEST([1, 2, 3]) as i;
SELECT i, CASE WHEN i>2 THEN 1 ELSE 0 END AS test FROM integers;
-- 1, 2, 3
-- 0, 0, 1
-- this is equivalent to:
SELECT i, IF(i > 2, 1, 0) AS test FROM integers;
-- 1, 2, 3
-- 0, 0, 1
The WHEN cond THEN expr part of the CASE statement can be chained, whenever any of the conditions returns true for a single tuple, the corresponding expression is evaluated and returned.
CREATE OR REPLACE TABLE INTEGERS as SELECT UNNEST([1, 2, 3]) as i;
SELECT i, CASE WHEN i=1 THEN 10 WHEN i=2 THEN 20 ELSE 0 END AS test FROM integers;
-- 1, 2, 3
-- 10, 20, 0
The ELSE part of the CASE statement is optional. If no else statement is provided and none of the conditions match, the CASE statement will return NULL.
CREATE OR REPLACE TABLE INTEGERS as SELECT UNNEST([1, 2, 3]) as i;
SELECT i, CASE WHEN i=1 THEN 10 END AS test FROM integers;
-- 1, 2, 3
-- 10, NULL, NULL
After the CASE but before the WHEN an individual expression can also be provided. When this is done, the CASE statement is essentially transformed into a switch statement.
CREATE OR REPLACE TABLE INTEGERS as SELECT UNNEST([1, 2, 3]) as i;
SELECT i, CASE i WHEN 1 THEN 10 WHEN 2 THEN 20 WHEN 3 THEN 30 END AS test FROM integers;
-- 1, 2, 3
-- 10, 20, 30
-- this is equivalent to:
SELECT i, CASE WHEN i=1 THEN 10 WHEN i=2 THEN 20 WHEN i=3 THEN 30 END AS test FROM integers;