Search Shortcut cmd + k | ctrl + k
- Installation
- Guides
- Overview
- SQL Features
- Data Import & Export
- CSV Import
- CSV Export
- Parquet Import
- Parquet Export
- Query Parquet
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- JSON Import
- JSON Export
- Excel Import
- Excel Export
- SQLite Import
- Postgres Import
- Meta Queries
- Python
- Install
- Execute SQL
- Jupyter Notebooks
- SQL on Pandas
- Import From Pandas
- Export To Pandas
- SQL on Arrow
- Import From Arrow
- Export To Arrow
- Relational API on Pandas
- Multiple Python Threads
- DuckDB with Ibis
- DuckDB with Fugue
- DuckDB with Polars
- DuckDB with Vaex
- DuckDB with DataFusion
- DuckDB with fsspec filesystems
- SQL Editors
- Data Viewers
- Documentation
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- Insert Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configure
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Java
- Julia
- Node.js
- ODBC
- Python
- Overview
- Data Ingestion
- Result Conversion
- DB API
- Relational API
- Function API
- Types API
- API Reference
- R
- Rust
- Scala
- Swift
- Wasm
- SQL
- Introduction
- Statements
- Overview
- Alter Table
- Attach/Detach
- Call
- Checkpoint
- Copy
- Create Macro
- Create Schema
- Create Sequence
- Create Table
- Create View
- Delete
- Drop
- Export
- Insert
- Pivot
- Select
- Set/Reset
- Unpivot
- Update
- Use
- Vacuum
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT
- SAMPLE
- UNNEST
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Data Types
- Overview
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Map
- NULL Values
- Numeric
- Struct
- Text
- Timestamp
- Union
- Expressions
- Functions
- Overview
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp With Time Zone Functions
- Utility Functions
- Aggregates
- Configuration
- Constraints
- Indexes
- Information Schema
- Metadata Functions
- Pragmas
- Samples
- Window Functions
- Extensions
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
Documentation
DuckDB with Polars
Polars is a DataFrames library built in Rust with bindings for Python and Node.js. It uses Apache Arrow's columnar format as its memory model. DuckDB can read Polars DataFrames and convert query results to Polars DataFrames. It does this internally using the efficient Apache Arrow integration. Note that the pyarrow
library must be installed for the integration to work.
Installation
pip install duckdb
pip install -U 'polars[pyarrow]'
Polars to DuckDB
DuckDB can natively query Polars DataFrames by referring to the name of Polars DataFrames as they exist in the current scope.
import duckdb
import polars as pl
df = pl.DataFrame(
{
"A": [1, 2, 3, 4, 5],
"fruits": ["banana", "banana", "apple", "apple", "banana"],
"B": [5, 4, 3, 2, 1],
"cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
}
)
duckdb.sql('SELECT * FROM df').show()
DuckDB to Polars
DuckDB can output results as Polars DataFrames using the .pl()
result-conversion method.
df = duckdb.sql("""
SELECT 1 AS id, 'banana' AS fruit
UNION ALL
SELECT 2, 'apple'
UNION ALL
SELECT 3, 'mango'""").pl()
print(df)
To learn more about Polars, feel free to explore their Python API Reference!