- Installation
- Guides
- Overview
- SQL Features
- Data Import & Export
- CSV Import
- CSV Export
- Parquet Import
- Parquet Export
- Query Parquet
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- JSON Import
- JSON Export
- Excel Import
- Excel Export
- SQLite Import
- Postgres Import
- Meta Queries
- Python
- Install
- Execute SQL
- Jupyter Notebooks
- SQL on Pandas
- Import From Pandas
- Export To Pandas
- SQL on Arrow
- Import From Arrow
- Export To Arrow
- Relational API on Pandas
- Multiple Python Threads
- DuckDB with Ibis
- DuckDB with Fugue
- DuckDB with Polars
- DuckDB with Vaex
- DuckDB with DataFusion
- DuckDB with fsspec filesystems
- SQL Editors
- Data Viewers
- Documentation
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- Insert Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configure
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Java
- Julia
- Node.js
- ODBC
- Python
- Overview
- Data Ingestion
- Result Conversion
- DB API
- Relational API
- Function API
- Types API
- API Reference
- R
- Rust
- Scala
- Swift
- Wasm
- SQL
- Introduction
- Statements
- Overview
- Alter Table
- Attach/Detach
- Call
- Checkpoint
- Copy
- Create Macro
- Create Schema
- Create Sequence
- Create Table
- Create View
- Delete
- Drop
- Export
- Insert
- Pivot
- Select
- Set/Reset
- Unpivot
- Update
- Use
- Vacuum
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT
- SAMPLE
- UNNEST
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Data Types
- Overview
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Map
- NULL Values
- Numeric
- Struct
- Text
- Timestamp
- Union
- Expressions
- Functions
- Overview
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp With Time Zone Functions
- Utility Functions
- Aggregates
- Configuration
- Constraints
- Indexes
- Information Schema
- Metadata Functions
- Pragmas
- Samples
- Window Functions
- Extensions
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
Installation
The DuckDB Rust API can be installed from crates.io. Please see the docs.rs for details.
Basic API Usage
duckdb-rs is an ergonomic wrapper based on the DuckDB C API, please refer to the README for details.
Startup & Shutdown
To use duckdb, you must first initialize a Connection
handle using Connection::open()
. Connection::open()
takes as parameter the database file to read and write from. If the database file does not exist, it will be created (the file extension may be .db
, .duckdb
, or anything else). You can also use Connection::open_in_memory()
to create an in-memory database. Note that for an in-memory database no data is persisted to disk (i.e. all data is lost when you exit the process).
use duckdb::{params, Connection, Result};
let conn = Connection::open_in_memory()?;
You can conn.close()
the Connection
manually, or just leave it out of scope, we had implement the Drop
trait which will automatically close the underlining db connection for you.
Querying
SQL queries can be sent to DuckDB using the execute()
method of connections, or we can also prepare the statement and then query on that.
conn.execute(
"INSERT INTO person (name, data) VALUES (?, ?)",
params![me.name, me.data],
)?;
let mut stmt = conn.prepare("SELECT id, name, data FROM person")?;
let person_iter = stmt.query_map([], |row| {
Ok(Person {
id: row.get(0)?,
name: row.get(1)?,
data: row.get(2)?,
})
})?;
for person in person_iter {
println!("Found person {:?}", person.unwrap());
}