- Installation
- Guides
- Overview
- SQL Features
- Data Import & Export
- CSV Import
- CSV Export
- Parquet Import
- Parquet Export
- Query Parquet
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- JSON Import
- JSON Export
- Excel Import
- Excel Export
- SQLite Import
- Postgres Import
- Meta Queries
- Python
- Install
- Execute SQL
- Jupyter Notebooks
- SQL on Pandas
- Import From Pandas
- Export To Pandas
- SQL on Arrow
- Import From Arrow
- Export To Arrow
- Relational API on Pandas
- Multiple Python Threads
- DuckDB with Ibis
- DuckDB with Fugue
- DuckDB with Polars
- DuckDB with Vaex
- DuckDB with DataFusion
- DuckDB with fsspec filesystems
- SQL Editors
- Data Viewers
- Documentation
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- Insert Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configure
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Java
- Julia
- Node.js
- ODBC
- Python
- Overview
- Data Ingestion
- Result Conversion
- DB API
- Relational API
- Function API
- Types API
- API Reference
- R
- Rust
- Scala
- Swift
- Wasm
- SQL
- Introduction
- Statements
- Overview
- Alter Table
- Attach/Detach
- Call
- Checkpoint
- Copy
- Create Macro
- Create Schema
- Create Sequence
- Create Table
- Create View
- Delete
- Drop
- Export
- Insert
- Pivot
- Select
- Set/Reset
- Unpivot
- Update
- Use
- Vacuum
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT
- SAMPLE
- UNNEST
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Data Types
- Overview
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Map
- NULL Values
- Numeric
- Struct
- Text
- Timestamp
- Union
- Expressions
- Functions
- Overview
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp With Time Zone Functions
- Utility Functions
- Aggregates
- Configuration
- Constraints
- Indexes
- Information Schema
- Metadata Functions
- Pragmas
- Samples
- Window Functions
- Extensions
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
Examples
-- read data from a hive partitioned data set
SELECT * FROM parquet_scan('orders/*/*/*.parquet', hive_partitioning=1);
-- write a table to a hive partitioned data set
COPY orders TO 'orders' (FORMAT PARQUET, PARTITION_BY (year, month));
Hive Partitioning
Hive partitionining is a partitioning strategy that is used to split a table into multiple files based on partition keys. The files are organized into folders. Within each folder, the partition key has a value that is determined by the name of the folder.
Below is an example of a hive partitioned file hierarchy. The files are partitioned on two keys (year
and month
).
orders
├── year=2021
│ ├── month=1
│ │ ├── file1.parquet
│ │ └── file2.parquet
│ └── month=2
│ └── file3.parquet
└── year=2022
├── month=11
│ ├── file4.parquet
│ └── file5.parquet
└── month=12
└── file6.parquet
Files stored in this hierarchy can be read using the hive_partitioning
flag.
SELECT * FROM parquet_scan('orders/*/*/*.parquet', hive_partitioning=1);
When we specify the hive_partitioning
flag, the values of the columns will be read from the directories.
Filter Pushdown
Filters on the partition keys are automatically pushed down into the files. This way the system skips reading files that are not necessary to answer a query. For example, consider the following query on the above dataset:
SELECT *
FROM parquet_scan('orders/*/*/*.parquet', hive_partitioning=1)
WHERE year=2022 AND month=11;
When executing this query, only the following files will be read:
orders
└── year=2022
└── month=11
├── file4.parquet
└── file5.parquet
Autodetection
By default the system tries to infer if the provided files are in a hive partitioned hierarchy. And if so, the HIVE_PARTITIONING
flag is enabled automatically. The autodetection will look at the names of the folders and search for a 'key'='value' pattern. This behaviour can be overridden by setting the HIVE_PARTITIONING
flag manually.
Writing Partitioned Files
See the Partitioned Writes section.