- Installation
- Guides
- Overview
- SQL Features
- Data Import & Export
- CSV Import
- CSV Export
- Parquet Import
- Parquet Export
- Query Parquet
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- JSON Import
- JSON Export
- Excel Import
- Excel Export
- SQLite Import
- Postgres Import
- Meta Queries
- Python
- Install
- Execute SQL
- Jupyter Notebooks
- SQL on Pandas
- Import From Pandas
- Export To Pandas
- SQL on Arrow
- Import From Arrow
- Export To Arrow
- Relational API on Pandas
- Multiple Python Threads
- DuckDB with Ibis
- DuckDB with Fugue
- DuckDB with Polars
- DuckDB with Vaex
- DuckDB with DataFusion
- DuckDB with fsspec filesystems
- SQL Editors
- Data Viewers
- Documentation
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- Insert Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configure
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Java
- Julia
- Node.js
- ODBC
- Python
- Overview
- Data Ingestion
- Result Conversion
- DB API
- Relational API
- Function API
- Types API
- API Reference
- R
- Rust
- Scala
- Swift
- Wasm
- SQL
- Introduction
- Statements
- Overview
- Alter Table
- Attach/Detach
- Call
- Checkpoint
- Copy
- Create Macro
- Create Schema
- Create Sequence
- Create Table
- Create View
- Delete
- Drop
- Export
- Insert
- Pivot
- Select
- Set/Reset
- Unpivot
- Update
- Use
- Vacuum
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT
- SAMPLE
- UNNEST
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Data Types
- Overview
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Map
- NULL Values
- Numeric
- Struct
- Text
- Timestamp
- Union
- Expressions
- Functions
- Overview
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp With Time Zone Functions
- Utility Functions
- Aggregates
- Configuration
- Constraints
- Indexes
- Information Schema
- Metadata Functions
- Pragmas
- Samples
- Window Functions
- Extensions
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
Below is a collection of tips to help when dealing with Parquet files.
Tips for reading Parquet files
Use union_by_name
when loading files with different schemas
The union_by_name
option can be used to unify the schema of files that have different or missing columns. For files that do not have certain columns, NULL
values are filled in.
SELECT * FROM read_parquet('flights*.parquet', union_by_name=True);
Tips for writing Parquet files
Enabling per_thread_output
If the final number of parquet files is not important, writing one file per thread can significantly improve performance. Using a glob pattern upon read or a hive partitioning structure are good ways to transparently handle multiple files.
COPY (FROM generate_series(10000000)) TO 'test.parquet' (FORMAT PARQUET, PER_THREAD_OUTPUT TRUE);
Selecting a row_group_size
The ROW_GROUP_SIZE
parameter specifies the minimum number of rows in a parquet row group, with a minimum value equal to DuckDB's vector size (currently 2048, but adjustable when compiling DuckDB), and a default of 122880.
A parquet row group is a partition of rows, consisting of a column chunk for each column in the dataset.
Compression algorithms are only applied per row group, so the larger the row group size, the more opportunities to compress the data.
DuckDB can read parquet row groups in parallel even within the same file and uses predicate pushdown to only scan the row groups whose metadata ranges match the WHERE
clause of the query.
However there is some overhead associated with reading the metadata in each group.
A good approach would be to ensure that within each file, the total number of row groups is at least as large as the number of CPU threads used to query that file.
More row groups beyond the thread count would improve the speed of highly selective queries, but slow down queries that must scan the whole file like aggregations.
-- write a query to a parquet file with a different row_group_size
COPY (FROM generate_series(100000)) TO 'row-groups.parquet' (FORMAT PARQUET, ROW_GROUP_SIZE 100000);