jax._src.scipy.stats.pareto 源代码

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from jax import lax
import jax.numpy as jnp
from jax._src.lax.lax import _const as _lax_const
from jax._src.numpy.util import promote_args_inexact
from jax._src.typing import Array, ArrayLike


[文档] def logpdf(x: ArrayLike, b: ArrayLike, loc: ArrayLike = 0, scale: ArrayLike = 1) -> Array: r"""Pareto log probability distribution function. JAX implementation of :obj:`scipy.stats.pareto` ``logpdf``. The Pareto probability density function is given by .. math:: f(x, b) = \begin{cases} bx^{-(b+1)} & x \ge 1\\ 0 & x < 1 \end{cases} and is defined for :math:`b > 0`. Args: x: arraylike, value at which to evaluate the PDF b: arraylike, distribution shape parameter loc: arraylike, distribution offset parameter scale: arraylike, distribution scale parameter Returns: array of logpdf values. See Also: :func:`jax.scipy.stats.pareto.pdf` """ x, b, loc, scale = promote_args_inexact("pareto.logpdf", x, b, loc, scale) one = _lax_const(x, 1) scaled_x = lax.div(lax.sub(x, loc), scale) normalize_term = lax.log(lax.div(scale, b)) log_probs = lax.neg(lax.add(normalize_term, lax.mul(lax.add(b, one), lax.log(scaled_x)))) return jnp.where(lax.lt(x, lax.add(loc, scale)), -jnp.inf, log_probs)
[文档] def pdf(x: ArrayLike, b: ArrayLike, loc: ArrayLike = 0, scale: ArrayLike = 1) -> Array: r"""Pareto probability distribution function. JAX implementation of :obj:`scipy.stats.pareto` ``pdf``. The Pareto probability density function is given by .. math:: f(x, b) = \begin{cases} bx^{-(b+1)} & x \ge 1\\ 0 & x < 1 \end{cases} and is defined for :math:`b > 0`. Args: x: arraylike, value at which to evaluate the PDF b: arraylike, distribution shape parameter loc: arraylike, distribution offset parameter scale: arraylike, distribution scale parameter Returns: array of pdf values. See Also: :func:`jax.scipy.stats.pareto.logpdf` """ return lax.exp(logpdf(x, b, loc, scale))