如何解析YAML输出
Prerequisites
本指南假设您熟悉以下概念:
来自不同提供商的LLMs通常根据它们训练的具体数据具有不同的优势。这也意味着有些可能在生成非JSON格式的输出时“更好”且更可靠。
此输出解析器允许用户指定任意模式,并使用YAML格式化其响应,以查询符合该模式的LLMs输出。
note
请记住,大型语言模型是存在漏洞的抽象!您需要使用具有足够容量的LLM来生成格式良好的YAML。
%pip install -qU langchain langchain-openai
import os
from getpass import getpass
if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass()
我们使用Pydantic与YamlOutputParser
来声明我们的数据模型,并为模型提供更多关于它应该生成什么类型的YAML的上下文:
from langchain.output_parsers import YamlOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
# Define your desired data structure.
class Joke(BaseModel):
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")
model = ChatOpenAI(temperature=0)
# And a query intented to prompt a language model to populate the data structure.
joke_query = "Tell me a joke."
# Set up a parser + inject instructions into the prompt template.
parser = YamlOutputParser(pydantic_object=Joke)
prompt = PromptTemplate(
template="Answer the user query.\n{format_instructions}\n{query}\n",
input_variables=["query"],
partial_variables={"format_instructions": parser.get_format_instructions()},
)
chain = prompt | model | parser
chain.invoke({"query": joke_query})
Joke(setup="Why couldn't the bicycle find its way home?", punchline='Because it lost its bearings!')
解析器将自动解析输出的YAML并创建一个包含数据的Pydantic模型。我们可以看到解析器的format_instructions
,它会被添加到提示中:
parser.get_format_instructions()
'The output should be formatted as a YAML instance that conforms to the given JSON schema below.\n\n# Examples\n## Schema\n\`\`\`\n{"title": "Players", "description": "A list of players", "type": "array", "items": {"$ref": "#/definitions/Player"}, "definitions": {"Player": {"title": "Player", "type": "object", "properties": {"name": {"title": "Name", "description": "Player name", "type": "string"}, "avg": {"title": "Avg", "description": "Batting average", "type": "number"}}, "required": ["name", "avg"]}}}\n\`\`\`\n## Well formatted instance\n\`\`\`\n- name: John Doe\n avg: 0.3\n- name: Jane Maxfield\n avg: 1.4\n\`\`\`\n\n## Schema\n\`\`\`\n{"properties": {"habit": { "description": "A common daily habit", "type": "string" }, "sustainable_alternative": { "description": "An environmentally friendly alternative to the habit", "type": "string"}}, "required": ["habit", "sustainable_alternative"]}\n\`\`\`\n## Well formatted instance\n\`\`\`\nhabit: Using disposable water bottles for daily hydration.\nsustainable_alternative: Switch to a reusable water bottle to reduce plastic waste and decrease your environmental footprint.\n\`\`\` \n\nPlease follow the standard YAML formatting conventions with an indent of 2 spaces and make sure that the data types adhere strictly to the following JSON schema: \n\`\`\`\n{"properties": {"setup": {"title": "Setup", "description": "question to set up a joke", "type": "string"}, "punchline": {"title": "Punchline", "description": "answer to resolve the joke", "type": "string"}}, "required": ["setup", "punchline"]}\n\`\`\`\n\nMake sure to always enclose the YAML output in triple backticks (\`\`\`). Please do not add anything other than valid YAML output!'
您可以并且应该尝试在提示的其他部分添加自己的格式化提示,以增强或替换默认指令。
下一步
你现在已经学会了如何提示模型返回XML。接下来,查看获取结构化输出的更广泛指南以了解其他相关技术。