从LLMRouterChain迁移
LLMRouterChain
将一个输入查询路由到多个目的地之一——也就是说,给定一个输入查询,它使用LLM从一系列目的地链中选择,并将其输入传递给选定的链。
LLMRouterChain
不支持常见的 聊天模型 功能,例如消息角色和 工具调用。在底层,LLMRouterChain
通过指示 LLM 生成 JSON 格式的文本来路由查询,并解析出预期的目的地。
考虑一个来自MultiPromptChain的例子,它使用了LLMRouterChain
。下面是一个(示例)默认提示:
from langchain.chains.router.multi_prompt import MULTI_PROMPT_ROUTER_TEMPLATE
destinations = """
animals: prompt for animal expert
vegetables: prompt for a vegetable expert
"""
router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(destinations=destinations)
print(router_template.replace("`", "'")) # for rendering purposes
Given a raw text input to a language model select the model prompt best suited for the input. You will be given the names of the available prompts and a description of what the prompt is best suited for. You may also revise the original input if you think that revising it will ultimately lead to a better response from the language model.
<< FORMATTING >>
Return a markdown code snippet with a JSON object formatted to look like:
'''json
{{
"destination": string \ name of the prompt to use or "DEFAULT"
"next_inputs": string \ a potentially modified version of the original input
}}
'''
REMEMBER: "destination" MUST be one of the candidate prompt names specified below OR it can be "DEFAULT" if the input is not well suited for any of the candidate prompts.
REMEMBER: "next_inputs" can just be the original input if you don't think any modifications are needed.
<< CANDIDATE PROMPTS >>
animals: prompt for animal expert
vegetables: prompt for a vegetable expert
<< INPUT >>
{input}
<< OUTPUT (must include '''json at the start of the response) >>
<< OUTPUT (must end with ''') >>
大多数行为是通过单一的自然语言提示来确定的。支持工具调用功能的聊天模型为这项任务带来了许多优势:
- 支持聊天提示模板,包括带有
system
和其他角色的消息; - 工具调用模型经过微调以生成结构化输出;
- 支持可运行的方法,如流式处理和异步操作。
现在让我们看看LLMRouterChain
与使用工具调用的LCEL实现的对比。请注意,在本指南中我们将使用langchain-openai >= 0.1.20
:
%pip install -qU langchain-core langchain-openai
import os
from getpass import getpass
if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass()
遗留问题
Details
from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
router_prompt = PromptTemplate(
# Note: here we use the prompt template from above. Generally this would need
# to be customized.
template=router_template,
input_variables=["input"],
output_parser=RouterOutputParser(),
)
chain = LLMRouterChain.from_llm(llm, router_prompt)
result = chain.invoke({"input": "What color are carrots?"})
print(result["destination"])
vegetables
LCEL
Details
from operator import itemgetter
from typing import Literal
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
from typing_extensions import TypedDict
llm = ChatOpenAI(model="gpt-4o-mini")
route_system = "Route the user's query to either the animal or vegetable expert."
route_prompt = ChatPromptTemplate.from_messages(
[
("system", route_system),
("human", "{input}"),
]
)
# Define schema for output:
class RouteQuery(TypedDict):
"""Route query to destination expert."""
destination: Literal["animal", "vegetable"]
# Instead of writing formatting instructions into the prompt, we
# leverage .with_structured_output to coerce the output into a simple
# schema.
chain = route_prompt | llm.with_structured_output(RouteQuery)
result = chain.invoke({"input": "What color are carrots?"})
print(result["destination"])
vegetable
下一步
请参阅本教程以获取更多关于使用提示模板、LLMs和输出解析器构建的详细信息。
查看LCEL概念文档以获取更多背景信息。