在进行查询分析时如何处理多个查询
有时,查询分析技术可能会生成多个查询。在这些情况下,我们需要记住运行所有查询,然后合并结果。我们将展示一个简单的示例(使用模拟数据)来说明如何做到这一点。
设置
安装依赖
%pip install -qU langchain langchain-community langchain-openai langchain-chroma
Note: you may need to restart the kernel to use updated packages.
设置环境变量
我们将在这个例子中使用OpenAI:
import getpass
import os
if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass.getpass()
# Optional, uncomment to trace runs with LangSmith. Sign up here: https://smith.langchain.com.
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
创建索引
我们将在虚假信息上创建一个向量存储。
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
texts = ["Harrison worked at Kensho", "Ankush worked at Facebook"]
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
vectorstore = Chroma.from_texts(
texts,
embeddings,
)
retriever = vectorstore.as_retriever(search_kwargs={"k": 1})
API Reference:OpenAIEmbeddings | RecursiveCharacterTextSplitter
查询分析
我们将使用函数调用来结构化输出。我们将让它返回多个查询。
from typing import List, Optional
from pydantic import BaseModel, Field
class Search(BaseModel):
"""Search over a database of job records."""
queries: List[str] = Field(
...,
description="Distinct queries to search for",
)
from langchain_core.output_parsers.openai_tools import PydanticToolsParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
output_parser = PydanticToolsParser(tools=[Search])
system = """You have the ability to issue search queries to get information to help answer user information.
If you need to look up two distinct pieces of information, you are allowed to do that!"""
prompt = ChatPromptTemplate.from_messages(
[
("system", system),
("human", "{question}"),
]
)
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
structured_llm = llm.with_structured_output(Search)
query_analyzer = {"question": RunnablePassthrough()} | prompt | structured_llm
我们可以看到,这允许创建多个查询
query_analyzer.invoke("where did Harrison Work")
Search(queries=['Harrison Work', 'Harrison employment history'])
query_analyzer.invoke("where did Harrison and ankush Work")
Search(queries=['Harrison work history', 'Ankush work history'])
使用查询分析进行检索
那么我们如何将其包含在一个链中呢?如果我们异步调用我们的检索器,这将使事情变得容易得多 - 这将让我们能够循环查询而不会因响应时间而受阻。
from langchain_core.runnables import chain
API Reference:chain
@chain
async def custom_chain(question):
response = await query_analyzer.ainvoke(question)
docs = []
for query in response.queries:
new_docs = await retriever.ainvoke(query)
docs.extend(new_docs)
# You probably want to think about reranking or deduplicating documents here
# But that is a separate topic
return docs
await custom_chain.ainvoke("where did Harrison Work")
[Document(page_content='Harrison worked at Kensho'),
Document(page_content='Harrison worked at Kensho')]
await custom_chain.ainvoke("where did Harrison and ankush Work")
[Document(page_content='Harrison worked at Kensho'),
Document(page_content='Ankush worked at Facebook')]