sentence_transformers.evaluation.RerankingEvaluator 源代码

from __future__ import annotations

import csv
import logging
import os
from contextlib import nullcontext
from typing import TYPE_CHECKING, Callable

import numpy as np
import torch
import tqdm
from sklearn.metrics import average_precision_score, ndcg_score

from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator
from sentence_transformers.util import cos_sim

if TYPE_CHECKING:
    from sentence_transformers.SentenceTransformer import SentenceTransformer

logger = logging.getLogger(__name__)


[文档] class RerankingEvaluator(SentenceEvaluator): """ This class evaluates a SentenceTransformer model for the task of re-ranking. Given a query and a list of documents, it computes the score [query, doc_i] for all possible documents and sorts them in decreasing order. Then, MRR@10, NDCG@10 and MAP is compute to measure the quality of the ranking. Args: samples (list): A list of dictionaries, where each dictionary represents a sample and has the following keys: - 'query': The search query. - 'positive': A list of positive (relevant) documents. - 'negative': A list of negative (irrelevant) documents. at_k (int, optional): Only consider the top k most similar documents to each query for the evaluation. Defaults to 10. name (str, optional): Name of the evaluator. Defaults to "". write_csv (bool, optional): Write results to CSV file. Defaults to True. similarity_fct (Callable[[torch.Tensor, torch.Tensor], torch.Tensor], optional): Similarity function between sentence embeddings. By default, cosine similarity. Defaults to cos_sim. batch_size (int, optional): Batch size to compute sentence embeddings. Defaults to 64. show_progress_bar (bool, optional): Show progress bar when computing embeddings. Defaults to False. use_batched_encoding (bool, optional): Whether or not to encode queries and documents in batches for greater speed, or 1-by-1 to save memory. Defaults to True. truncate_dim (Optional[int], optional): The dimension to truncate sentence embeddings to. `None` uses the model's current truncation dimension. Defaults to None. mrr_at_k (Optional[int], optional): Deprecated parameter. Please use `at_k` instead. Defaults to None. """ def __init__( self, samples, at_k: int = 10, name: str = "", write_csv: bool = True, similarity_fct: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] = cos_sim, batch_size: int = 64, show_progress_bar: bool = False, use_batched_encoding: bool = True, truncate_dim: int | None = None, mrr_at_k: int | None = None, ): super().__init__() self.samples = samples self.name = name if mrr_at_k is not None: logger.warning(f"The `mrr_at_k` parameter has been deprecated; please use `at_k={mrr_at_k}` instead.") self.at_k = mrr_at_k else: self.at_k = at_k self.similarity_fct = similarity_fct self.batch_size = batch_size self.show_progress_bar = show_progress_bar self.use_batched_encoding = use_batched_encoding self.truncate_dim = truncate_dim if isinstance(self.samples, dict): self.samples = list(self.samples.values()) ### Remove sample with empty positive / negative set self.samples = [ sample for sample in self.samples if len(sample["positive"]) > 0 and len(sample["negative"]) > 0 ] self.csv_file = "RerankingEvaluator" + ("_" + name if name else "") + f"_results_@{self.at_k}.csv" self.csv_headers = [ "epoch", "steps", "MAP", f"MRR@{self.at_k}", f"NDCG@{self.at_k}", ] self.write_csv = write_csv self.primary_metric = "map" def __call__( self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: """ Evaluates the model on the dataset and returns the evaluation metrics. Args: model (SentenceTransformer): The SentenceTransformer model to evaluate. output_path (str, optional): The output path to write the results. Defaults to None. epoch (int, optional): The current epoch number. Defaults to -1. steps (int, optional): The current step number. Defaults to -1. Returns: Dict[str, float]: A dictionary containing the evaluation metrics. """ if epoch != -1: if steps == -1: out_txt = f" after epoch {epoch}" else: out_txt = f" in epoch {epoch} after {steps} steps" else: out_txt = "" if self.truncate_dim is not None: out_txt += f" (truncated to {self.truncate_dim})" logger.info(f"RerankingEvaluator: Evaluating the model on the {self.name} dataset{out_txt}:") scores = self.compute_metrices(model) mean_ap = scores["map"] mean_mrr = scores["mrr"] mean_ndcg = scores["ndcg"] #### Some stats about the dataset num_positives = [len(sample["positive"]) for sample in self.samples] num_negatives = [len(sample["negative"]) for sample in self.samples] logger.info( f"Queries: {len(self.samples)} \t Positives: Min {np.min(num_positives):.1f}, Mean {np.mean(num_positives):.1f}, Max {np.max(num_positives):.1f} \t Negatives: Min {np.min(num_negatives):.1f}, Mean {np.mean(num_negatives):.1f}, Max {np.max(num_negatives):.1f}" ) logger.info(f"MAP: {mean_ap * 100:.2f}") logger.info(f"MRR@{self.at_k}: {mean_mrr * 100:.2f}") logger.info(f"NDCG@{self.at_k}: {mean_ndcg * 100:.2f}") #### Write results to disc if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, newline="", mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, mean_ap, mean_mrr, mean_ndcg]) metrics = { "map": mean_ap, f"mrr@{self.at_k}": mean_mrr, f"ndcg@{self.at_k}": mean_ndcg, } metrics = self.prefix_name_to_metrics(metrics, self.name) self.store_metrics_in_model_card_data(model, metrics) return metrics def compute_metrices(self, model): """ Computes the evaluation metrics for the given model. Args: model (SentenceTransformer): The SentenceTransformer model to compute metrics for. Returns: Dict[str, float]: A dictionary containing the evaluation metrics. """ return ( self.compute_metrices_batched(model) if self.use_batched_encoding else self.compute_metrices_individual(model) ) def compute_metrices_batched(self, model): """ Computes the evaluation metrics in a batched way, by batching all queries and all documents together. Args: model (SentenceTransformer): The SentenceTransformer model to compute metrics for. Returns: Dict[str, float]: A dictionary containing the evaluation metrics. """ all_mrr_scores = [] all_ndcg_scores = [] all_ap_scores = [] with nullcontext() if self.truncate_dim is None else model.truncate_sentence_embeddings(self.truncate_dim): all_query_embs = model.encode( [sample["query"] for sample in self.samples], convert_to_tensor=True, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, ) all_docs = [] for sample in self.samples: all_docs.extend(sample["positive"]) all_docs.extend(sample["negative"]) all_docs_embs = model.encode( all_docs, convert_to_tensor=True, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar ) # Compute scores query_idx, docs_idx = 0, 0 for instance in self.samples: query_emb = all_query_embs[query_idx] query_idx += 1 num_pos = len(instance["positive"]) num_neg = len(instance["negative"]) docs_emb = all_docs_embs[docs_idx : docs_idx + num_pos + num_neg] docs_idx += num_pos + num_neg if num_pos == 0 or num_neg == 0: continue pred_scores = self.similarity_fct(query_emb, docs_emb) if len(pred_scores.shape) > 1: pred_scores = pred_scores[0] pred_scores_argsort = torch.argsort(-pred_scores) # Sort in decreasing order pred_scores = pred_scores.cpu().tolist() # Compute MRR score is_relevant = [1] * num_pos + [0] * num_neg mrr_score = 0 for rank, index in enumerate(pred_scores_argsort[0 : self.at_k]): if is_relevant[index]: mrr_score = 1 / (rank + 1) break all_mrr_scores.append(mrr_score) # Compute NDCG score all_ndcg_scores.append(ndcg_score([is_relevant], [pred_scores], k=self.at_k)) # Compute AP all_ap_scores.append(average_precision_score(is_relevant, pred_scores)) mean_ap = np.mean(all_ap_scores) mean_mrr = np.mean(all_mrr_scores) mean_ndcg = np.mean(all_ndcg_scores) return {"map": mean_ap, "mrr": mean_mrr, "ndcg": mean_ndcg} def compute_metrices_individual(self, model): """ Computes the evaluation metrics individually by embedding every (query, positive, negative) tuple individually. Args: model (SentenceTransformer): The SentenceTransformer model to compute metrics for. Returns: Dict[str, float]: A dictionary containing the evaluation metrics. """ all_mrr_scores = [] all_ndcg_scores = [] all_ap_scores = [] for instance in tqdm.tqdm(self.samples, disable=not self.show_progress_bar, desc="Samples"): query = instance["query"] positive = list(instance["positive"]) negative = list(instance["negative"]) if len(positive) == 0 or len(negative) == 0: continue docs = positive + negative is_relevant = [1] * len(positive) + [0] * len(negative) with nullcontext() if self.truncate_dim is None else model.truncate_sentence_embeddings(self.truncate_dim): query_emb = model.encode( [query], convert_to_tensor=True, batch_size=self.batch_size, show_progress_bar=False ) docs_emb = model.encode( docs, convert_to_tensor=True, batch_size=self.batch_size, show_progress_bar=False ) pred_scores = self.similarity_fct(query_emb, docs_emb) if len(pred_scores.shape) > 1: pred_scores = pred_scores[0] pred_scores_argsort = torch.argsort(-pred_scores) # Sort in decreasing order pred_scores = pred_scores.cpu().tolist() # Compute MRR score mrr_score = 0 for rank, index in enumerate(pred_scores_argsort[0 : self.at_k]): if is_relevant[index]: mrr_score = 1 / (rank + 1) break all_mrr_scores.append(mrr_score) # Compute NDCG score all_ndcg_scores.append(ndcg_score([is_relevant], [pred_scores], k=self.at_k)) # Compute AP all_ap_scores.append(average_precision_score(is_relevant, pred_scores)) mean_ap = np.mean(all_ap_scores) mean_mrr = np.mean(all_mrr_scores) mean_ndcg = np.mean(all_ndcg_scores) return {"map": mean_ap, "mrr": mean_mrr, "ndcg": mean_ndcg}