sentence_transformers.losses.CosineSimilarityLoss 源代码

from __future__ import annotations

from typing import Any, Iterable

import torch
from torch import Tensor, nn

from sentence_transformers.SentenceTransformer import SentenceTransformer
from sentence_transformers.util import fullname


[文档] class CosineSimilarityLoss(nn.Module): def __init__( self, model: SentenceTransformer, loss_fct: nn.Module = nn.MSELoss(), cos_score_transformation: nn.Module = nn.Identity(), ) -> None: """ CosineSimilarityLoss expects that the InputExamples consists of two texts and a float label. It computes the vectors ``u = model(sentence_A)`` and ``v = model(sentence_B)`` and measures the cosine-similarity between the two. By default, it minimizes the following loss: ``||input_label - cos_score_transformation(cosine_sim(u,v))||_2``. Args: model: SentenceTransformer model loss_fct: Which pytorch loss function should be used to compare the ``cosine_similarity(u, v)`` with the input_label? By default, MSE is used: ``||input_label - cosine_sim(u, v)||_2`` cos_score_transformation: The cos_score_transformation function is applied on top of cosine_similarity. By default, the identify function is used (i.e. no change). References: - `Training Examples > Semantic Textual Similarity <../../examples/training/sts/README.html>`_ Requirements: 1. Sentence pairs with corresponding similarity scores in range `[0, 1]` Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`CoSENTLoss` seems to produce a stronger training signal than CosineSimilarityLoss. In our experiments, CoSENTLoss is recommended. - :class:`AnglELoss` is :class:`CoSENTLoss` with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. It also produces a stronger training signal than CosineSimilarityLoss. Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.CosineSimilarityLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.model = model self.loss_fct = loss_fct self.cos_score_transformation = cos_score_transformation def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] output = self.cos_score_transformation(torch.cosine_similarity(embeddings[0], embeddings[1])) return self.loss_fct(output, labels.float().view(-1)) def get_config_dict(self) -> dict[str, Any]: return {"loss_fct": fullname(self.loss_fct)}