sentence_transformers.model_card 源代码

from __future__ import annotations

import json
import logging
import random
import re
from collections import Counter, defaultdict
from copy import copy
from dataclasses import dataclass, field, fields
from pathlib import Path
from platform import python_version
from textwrap import indent
from typing import TYPE_CHECKING, Any, Literal

import torch
import transformers
from huggingface_hub import CardData, ModelCard
from huggingface_hub import dataset_info as get_dataset_info
from huggingface_hub import model_info as get_model_info
from huggingface_hub.repocard_data import EvalResult, eval_results_to_model_index
from huggingface_hub.utils import yaml_dump
from torch import nn
from tqdm.autonotebook import tqdm
from transformers import TrainerCallback
from transformers.integrations import CodeCarbonCallback
from transformers.modelcard import make_markdown_table
from transformers.trainer_callback import TrainerControl, TrainerState

from sentence_transformers import __version__ as sentence_transformers_version
from sentence_transformers.models import Transformer
from sentence_transformers.training_args import SentenceTransformerTrainingArguments
from sentence_transformers.util import fullname, is_accelerate_available, is_datasets_available

if is_datasets_available():
    from datasets import Dataset, DatasetDict, IterableDataset, Value

logger = logging.getLogger(__name__)

if TYPE_CHECKING:
    from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator
    from sentence_transformers.SentenceTransformer import SentenceTransformer
    from sentence_transformers.trainer import SentenceTransformerTrainer


class ModelCardCallback(TrainerCallback):
    def __init__(self, trainer: SentenceTransformerTrainer, default_args_dict: dict[str, Any]) -> None:
        super().__init__()
        self.trainer = trainer
        self.default_args_dict = default_args_dict

        callbacks = [
            callback
            for callback in self.trainer.callback_handler.callbacks
            if isinstance(callback, CodeCarbonCallback)
        ]
        if callbacks:
            trainer.model.model_card_data.code_carbon_callback = callbacks[0]

        trainer.model.model_card_data.trainer = trainer
        trainer.model.model_card_data.add_tags("generated_from_trainer")

    def on_init_end(
        self,
        args: SentenceTransformerTrainingArguments,
        state: TrainerState,
        control: TrainerControl,
        model: SentenceTransformer,
        **kwargs,
    ) -> None:
        from sentence_transformers.losses import AdaptiveLayerLoss, Matryoshka2dLoss, MatryoshkaLoss

        # Try to infer the dataset "name", "id" and "revision" from the dataset cache files
        if self.trainer.train_dataset:
            model.model_card_data.train_datasets = model.model_card_data.extract_dataset_metadata(
                self.trainer.train_dataset, model.model_card_data.train_datasets, "train"
            )

        if self.trainer.eval_dataset:
            model.model_card_data.eval_datasets = model.model_card_data.extract_dataset_metadata(
                self.trainer.eval_dataset, model.model_card_data.eval_datasets, "eval"
            )

        if isinstance(self.trainer.loss, dict):
            losses = list(self.trainer.loss.values())
        else:
            losses = [self.trainer.loss]
        # Some losses are known to use other losses internally, e.g. MatryoshkaLoss, AdaptiveLayerLoss and Matryoshka2dLoss
        # So, verify for `loss` attributes in the losses
        loss_idx = 0
        while loss_idx < len(losses):
            loss = losses[loss_idx]
            if (
                isinstance(loss, (MatryoshkaLoss, AdaptiveLayerLoss, Matryoshka2dLoss))
                and hasattr(loss, "loss")
                and loss.loss not in losses
            ):
                losses.append(loss.loss)
            loss_idx += 1

        model.model_card_data.set_losses(losses)

    def on_train_begin(
        self,
        args: SentenceTransformerTrainingArguments,
        state: TrainerState,
        control: TrainerControl,
        model: SentenceTransformer,
        **kwargs,
    ) -> None:
        # model.model_card_data.hyperparameters = extract_hyperparameters_from_trainer(self.trainer)
        ignore_keys = {
            "output_dir",
            "logging_dir",
            "logging_strategy",
            "logging_first_step",
            "logging_steps",
            "evaluation_strategy",
            "eval_steps",
            "eval_delay",
            "save_strategy",
            "save_steps",
            "save_total_limit",
            "metric_for_best_model",
            "greater_is_better",
            "report_to",
            "samples_per_label",
            "show_progress_bar",
            "do_train",
            "do_eval",
            "do_test",
            "run_name",
            "hub_token",
            "push_to_hub_token",
        }
        args_dict = args.to_dict()
        model.model_card_data.all_hyperparameters = {
            key: value for key, value in args_dict.items() if key not in ignore_keys
        }
        model.model_card_data.non_default_hyperparameters = {
            key: value
            for key, value in args_dict.items()
            if key not in ignore_keys and key in self.default_args_dict and value != self.default_args_dict[key]
        }

    def on_evaluate(
        self,
        args: SentenceTransformerTrainingArguments,
        state: TrainerState,
        control: TrainerControl,
        model: SentenceTransformer,
        metrics: dict[str, float],
        **kwargs,
    ) -> None:
        loss_dict = {" ".join(key.split("_")[1:]): metrics[key] for key in metrics if key.endswith("_loss")}
        if (
            model.model_card_data.training_logs
            and model.model_card_data.training_logs[-1]["Step"] == state.global_step
        ):
            model.model_card_data.training_logs[-1].update(loss_dict)
        else:
            model.model_card_data.training_logs.append(
                {
                    "Epoch": state.epoch,
                    "Step": state.global_step,
                    **loss_dict,
                }
            )

    def on_log(
        self,
        args: SentenceTransformerTrainingArguments,
        state: TrainerState,
        control: TrainerControl,
        model: SentenceTransformer,
        logs: dict[str, float],
        **kwargs,
    ) -> None:
        keys = {"loss"} & set(logs)
        if keys:
            if (
                model.model_card_data.training_logs
                and model.model_card_data.training_logs[-1]["Step"] == state.global_step
            ):
                model.model_card_data.training_logs[-1]["Training Loss"] = logs[keys.pop()]
            else:
                model.model_card_data.training_logs.append(
                    {
                        "Epoch": state.epoch,
                        "Step": state.global_step,
                        "Training Loss": logs[keys.pop()],
                    }
                )


YAML_FIELDS = [
    "language",
    "license",
    "library_name",
    "tags",
    "datasets",
    "metrics",
    "pipeline_tag",
    "widget",
    "model-index",
    "co2_eq_emissions",
    "base_model",
]
IGNORED_FIELDS = ["model", "trainer", "eval_results_dict"]


def get_versions() -> dict[str, Any]:
    versions = {
        "python": python_version(),
        "sentence_transformers": sentence_transformers_version,
        "transformers": transformers.__version__,
        "torch": torch.__version__,
    }
    if is_accelerate_available():
        from accelerate import __version__ as accelerate_version

        versions["accelerate"] = accelerate_version
    if is_datasets_available():
        from datasets import __version__ as datasets_version

        versions["datasets"] = datasets_version
    from tokenizers import __version__ as tokenizers_version

    versions["tokenizers"] = tokenizers_version

    return versions


[文档] @dataclass class SentenceTransformerModelCardData(CardData): """A dataclass storing data used in the model card. Args: language (`Optional[Union[str, List[str]]]`): The model language, either a string or a list, e.g. "en" or ["en", "de", "nl"] license (`Optional[str]`): The license of the model, e.g. "apache-2.0", "mit", or "cc-by-nc-sa-4.0" model_name (`Optional[str]`): The pretty name of the model, e.g. "SentenceTransformer based on microsoft/mpnet-base". model_id (`Optional[str]`): The model ID when pushing the model to the Hub, e.g. "tomaarsen/sbert-mpnet-base-allnli". train_datasets (`List[Dict[str, str]]`): A list of the names and/or Hugging Face dataset IDs of the training datasets. e.g. [{"name": "SNLI", "id": "stanfordnlp/snli"}, {"name": "MultiNLI", "id": "nyu-mll/multi_nli"}, {"name": "STSB"}] eval_datasets (`List[Dict[str, str]]`): A list of the names and/or Hugging Face dataset IDs of the evaluation datasets. e.g. [{"name": "SNLI", "id": "stanfordnlp/snli"}, {"id": "mteb/stsbenchmark-sts"}] task_name (`str`): The human-readable task the model is trained on, e.g. "semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more". tags (`Optional[List[str]]`): A list of tags for the model, e.g. ["sentence-transformers", "sentence-similarity", "feature-extraction"]. .. tip:: Install `codecarbon <https://github.com/mlco2/codecarbon>`_ to automatically track carbon emission usage and include it in your model cards. Example:: >>> model = SentenceTransformer( ... "microsoft/mpnet-base", ... model_card_data=SentenceTransformerModelCardData( ... model_id="tomaarsen/sbert-mpnet-base-allnli", ... train_datasets=[{"name": "SNLI", "id": "stanfordnlp/snli"}, {"name": "MultiNLI", "id": "nyu-mll/multi_nli"}], ... eval_datasets=[{"name": "SNLI", "id": "stanfordnlp/snli"}, {"name": "MultiNLI", "id": "nyu-mll/multi_nli"}], ... license="apache-2.0", ... language="en", ... ), ... ) """ # Potentially provided by the user language: str | list[str] | None = field(default_factory=list) license: str | None = None model_name: str | None = None model_id: str | None = None train_datasets: list[dict[str, str]] = field(default_factory=list) eval_datasets: list[dict[str, str]] = field(default_factory=list) task_name: str = ( "semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more" ) tags: list[str] | None = field( default_factory=lambda: [ "sentence-transformers", "sentence-similarity", "feature-extraction", ] ) generate_widget_examples: Literal["deprecated"] = "deprecated" # Automatically filled by `ModelCardCallback` and the Trainer directly base_model: str | None = field(default=None, init=False) base_model_revision: str | None = field(default=None, init=False) non_default_hyperparameters: dict[str, Any] = field(default_factory=dict, init=False) all_hyperparameters: dict[str, Any] = field(default_factory=dict, init=False) eval_results_dict: dict[SentenceEvaluator, dict[str, Any]] | None = field(default_factory=dict, init=False) training_logs: list[dict[str, float]] = field(default_factory=list, init=False) widget: list[dict[str, str]] = field(default_factory=list, init=False) predict_example: str | None = field(default=None, init=False) label_example_list: list[dict[str, str]] = field(default_factory=list, init=False) code_carbon_callback: CodeCarbonCallback | None = field(default=None, init=False) citations: dict[str, str] = field(default_factory=dict, init=False) best_model_step: int | None = field(default=None, init=False) trainer: SentenceTransformerTrainer | None = field(default=None, init=False, repr=False) datasets: list[str] = field(default_factory=list, init=False, repr=False) # Utility fields first_save: bool = field(default=True, init=False) widget_step: int = field(default=-1, init=False) # Computed once, always unchanged pipeline_tag: str = field(default="sentence-similarity", init=False) library_name: str = field(default="sentence-transformers", init=False) version: dict[str, str] = field(default_factory=get_versions, init=False) # Passed via `register_model` only model: SentenceTransformer | None = field(default=None, init=False, repr=False) def __post_init__(self) -> None: # We don't want to save "ignore_metadata_errors" in our Model Card infer_languages = not self.language if isinstance(self.language, str): self.language = [self.language] self.train_datasets = self.validate_datasets(self.train_datasets, infer_languages=infer_languages) self.eval_datasets = self.validate_datasets(self.eval_datasets, infer_languages=infer_languages) if self.model_id and self.model_id.count("/") != 1: logger.warning( f"The provided {self.model_id!r} model ID should include the organization or user," ' such as "tomaarsen/mpnet-base-nli-matryoshka". Setting `model_id` to None.' ) self.model_id = None def validate_datasets(self, dataset_list, infer_languages: bool = True) -> None: output_dataset_list = [] for dataset in dataset_list: if "name" not in dataset: if "id" in dataset: dataset["name"] = dataset["id"] if "id" in dataset: # Try to determine the language from the dataset on the Hub try: info = get_dataset_info(dataset["id"]) except Exception: logger.warning( f"The dataset `id` {dataset['id']!r} does not exist on the Hub. Setting the `id` to None." ) del dataset["id"] else: if info.cardData and infer_languages and "language" in info.cardData: dataset_language = info.cardData.get("language") if dataset_language is None: break if isinstance(dataset_language, str): dataset_language = [dataset_language] for language in dataset_language: if language not in self.language: self.language.append(language) # Track dataset IDs for the metadata if info.id not in self.datasets: self.datasets.append(info.id) output_dataset_list.append(dataset) return output_dataset_list def set_losses(self, losses: list[nn.Module]) -> None: citations = { "Sentence Transformers": """ @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } """ } for loss in losses: try: citations[loss.__class__.__name__] = loss.citation except Exception: pass inverted_citations = defaultdict(list) for loss, citation in citations.items(): inverted_citations[citation].append(loss) def join_list(losses: list[str]) -> str: if len(losses) > 1: return ", ".join(losses[:-1]) + " and " + losses[-1] return losses[0] self.citations = {join_list(losses): citation for citation, losses in inverted_citations.items()} self.add_tags([f"loss:{loss}" for loss in {loss.__class__.__name__: loss for loss in losses}]) def set_best_model_step(self, step: int) -> None: self.best_model_step = step def set_widget_examples(self, dataset: Dataset | DatasetDict) -> None: if isinstance(dataset, IterableDataset): # We can't set widget examples from an IterableDataset without losing data return if isinstance(dataset, Dataset): dataset = DatasetDict(dataset=dataset) self.widget = [] # Pick 5 random datasets to generate widget examples from dataset_names = Counter(random.choices(list(dataset.keys()), k=5)) num_samples_to_check = 1000 for dataset_name, num_samples in tqdm( dataset_names.items(), desc="Computing widget examples", unit="example", leave=False ): # Sample 1000 examples from the dataset, sort them by length, and pick the shortest examples as the core # examples for the widget columns = [ column for column, feature in dataset[dataset_name].features.items() if isinstance(feature, Value) and feature.dtype == "string" and column != "dataset_name" ] str_dataset = dataset[dataset_name].select_columns(columns) dataset_size = len(str_dataset) lengths = {} for idx, sample in enumerate( str_dataset.select(random.sample(range(dataset_size), k=min(num_samples_to_check, dataset_size))) ): lengths[idx] = sum(len(value) for value in sample.values()) indices, _ = zip(*sorted(lengths.items(), key=lambda x: x[1])) target_indices, backup_indices = indices[:num_samples], list(indices[num_samples:][::-1]) # We want 4 texts, so we take texts from the backup indices, short texts first for idx in target_indices: # This is anywhere between 1 and n texts sentences = list(str_dataset[idx].values()) while len(sentences) < 4 and backup_indices: backup_idx = backup_indices.pop() backup_sample = list(str_dataset[backup_idx].values()) if len(backup_sample) == 1: # If there is only one text in the backup sample, we take it sentences.extend(backup_sample) else: # Otherwise we prefer the 2nd text: the 1st can be another query sentences.append(backup_sample[1]) if len(sentences) < 4: continue self.widget.append( {"source_sentence": sentences[0], "sentences": random.sample(sentences[1:], k=len(sentences) - 1)} ) self.predict_example = sentences[:3] def set_evaluation_metrics(self, evaluator: SentenceEvaluator, metrics: dict[str, Any]) -> None: from sentence_transformers.evaluation import SequentialEvaluator self.eval_results_dict[evaluator] = copy(metrics) # If the evaluator has a primary metric and we have a trainer, then add the primary metric to the training logs if hasattr(evaluator, "primary_metric") and (primary_metrics := evaluator.primary_metric): if isinstance(evaluator, SequentialEvaluator): primary_metrics = [sub_evaluator.primary_metric for sub_evaluator in evaluator.evaluators] elif isinstance(primary_metrics, str): primary_metrics = [primary_metrics] if self.trainer is None: step = 0 epoch = 0 else: step = self.trainer.state.global_step epoch = self.trainer.state.epoch training_log_metrics = {key: value for key, value in metrics.items() if key in primary_metrics} if self.training_logs and self.training_logs[-1]["Step"] == step: self.training_logs[-1].update(training_log_metrics) else: self.training_logs.append( { "Epoch": epoch, "Step": step, **training_log_metrics, } ) def set_label_examples(self, dataset: Dataset) -> None: num_examples_per_label = 3 examples = defaultdict(list) finished_labels = set() for sample in dataset: text = sample["text"] label = sample["label"] if label not in finished_labels: examples[label].append(f"<li>{repr(text)}</li>") if len(examples[label]) >= num_examples_per_label: finished_labels.add(label) if len(finished_labels) == self.num_classes: break self.label_example_list = [ { "Label": self.model.labels[label] if self.model.labels and isinstance(label, int) else label, "Examples": "<ul>" + "".join(example_set) + "</ul>", } for label, example_set in examples.items() ] def infer_datasets(self, dataset: Dataset | DatasetDict, dataset_name: str | None = None) -> list[dict[str, str]]: if isinstance(dataset, DatasetDict): return [ dataset for dataset_name, sub_dataset in dataset.items() for dataset in self.infer_datasets(sub_dataset, dataset_name=dataset_name) ] # Ignore the dataset name if it is a default name from the FitMixin backwards compatibility if dataset_name and re.match(r"_dataset_\d+", dataset_name): dataset_name = None dataset_output = { "name": dataset_name or dataset.info.dataset_name, "split": str(dataset.split), } if dataset.info.splits and dataset.split in dataset.info.splits: dataset_output["size"] = dataset.info.splits[dataset.split].num_examples # The download checksums seems like a fairly safe way to extract the dataset ID and revision # for iterable datasets as well as regular datasets from the Hub if checksums := dataset.download_checksums: source = list(checksums.keys())[0] if source.startswith("hf://datasets/") and "@" in source: source_parts = source[len("hf://datasets/") :].split("@") dataset_output["id"] = source_parts[0] if (revision := source_parts[1].split("/")[0]) and len(revision) == 40: dataset_output["revision"] = revision return [dataset_output] def compute_dataset_metrics( self, dataset: Dataset | IterableDataset | None, dataset_info: dict[str, Any], loss: dict[str, nn.Module] | nn.Module | None, ) -> dict[str, str]: """ Given a dataset, compute the following: * Dataset Size * Dataset Columns * Dataset Stats - Strings: min, mean, max word count/token length - Integers: Counter() instance - Floats: min, mean, max range - List: number of elements or min, mean, max number of elements * 3 Example samples * Loss function name - Loss function config """ if not dataset: return {} if "size" not in dataset_info and isinstance(dataset, Dataset): dataset_info["size"] = len(dataset) dataset_info["columns"] = [f"<code>{column}</code>" for column in dataset.column_names] dataset_info["stats"] = {} if isinstance(dataset, Dataset): for column in dataset.column_names: subsection = dataset[:1000][column] first = subsection[0] if isinstance(first, str): tokenized = self.model.tokenize(subsection) if isinstance(tokenized, dict) and "attention_mask" in tokenized: lengths = tokenized["attention_mask"].sum(dim=1).tolist() suffix = "tokens" else: lengths = [len(sentence) for sentence in subsection] suffix = "characters" dataset_info["stats"][column] = { "dtype": "string", "data": { "min": f"{round(min(lengths), 2)} {suffix}", "mean": f"{round(sum(lengths) / len(lengths), 2)} {suffix}", "max": f"{round(max(lengths), 2)} {suffix}", }, } elif isinstance(first, (int, bool)): counter = Counter(subsection) dataset_info["stats"][column] = { "dtype": "int", "data": { key: f"{'~' if len(counter) > 1 else ''}{counter[key] / len(subsection):.2%}" for key in sorted(counter) }, } elif isinstance(first, float): dataset_info["stats"][column] = { "dtype": "float", "data": { "min": round(min(dataset[column]), 2), "mean": round(sum(dataset[column]) / len(dataset), 2), "max": round(max(dataset[column]), 2), }, } elif isinstance(first, list): counter = Counter([len(lst) for lst in subsection]) if len(counter) == 1: dataset_info["stats"][column] = { "dtype": "list", "data": { "size": f"{len(first)} elements", }, } else: dataset_info["stats"][column] = { "dtype": "list", "data": { "min": f"{min(counter)} elements", "mean": f"{sum(counter) / len(counter):.2f} elements", "max": f"{max(counter)} elements", }, } else: dataset_info["stats"][column] = {"dtype": fullname(first), "data": {}} def to_html_list(data: dict): return "<ul><li>" + "</li><li>".join(f"{key}: {value}" for key, value in data.items()) + "</li></ul>" stats_lines = [ {"": "type", **{key: value["dtype"] for key, value in dataset_info["stats"].items()}}, {"": "details", **{key: to_html_list(value["data"]) for key, value in dataset_info["stats"].items()}}, ] dataset_info["stats_table"] = indent(make_markdown_table(stats_lines).replace("-:|", "--|"), " ") dataset_info["examples"] = dataset[:3] num_samples = len(dataset_info["examples"][list(dataset_info["examples"])[0]]) examples_lines = [] for sample_idx in range(num_samples): columns = {} for column in dataset.column_names: value = dataset_info["examples"][column][sample_idx] # If the value is a long list, truncate it if isinstance(value, list) and len(value) > 5: value = str(value[:5])[:-1] + ", ...]" # Avoid newlines in the table value = str(value).replace("\n", "<br>") columns[column] = f"<code>{value}</code>" examples_lines.append(columns) dataset_info["examples_table"] = indent(make_markdown_table(examples_lines).replace("-:|", "--|"), " ") dataset_info["loss"] = { "fullname": fullname(loss), } if hasattr(loss, "get_config_dict"): config = loss.get_config_dict() try: str_config = json.dumps(config, indent=4) except TypeError: str_config = str(config) dataset_info["loss"]["config_code"] = indent(f"```json\n{str_config}\n```", " ") return dataset_info def extract_dataset_metadata( self, dataset: Dataset | DatasetDict, dataset_metadata, dataset_type: Literal["train", "eval"] ) -> dict[str, Any]: if dataset: if dataset_metadata and ( (isinstance(dataset, DatasetDict) and len(dataset_metadata) != len(dataset)) or (isinstance(dataset, Dataset) and len(dataset_metadata) != 1) ): logger.warning( f"The number of `{dataset_type}_datasets` in the model card data does not match the number of {dataset_type} datasets in the Trainer. " f"Removing the provided `{dataset_type}_datasets` from the model card data." ) dataset_metadata = [] if not dataset_metadata: dataset_metadata = self.infer_datasets(dataset) if isinstance(dataset, DatasetDict): dataset_metadata = [ self.compute_dataset_metrics( dataset_value, dataset_info, self.trainer.loss[dataset_name] if isinstance(self.trainer.loss, dict) else self.trainer.loss, ) for dataset_name, dataset_value, dataset_info in zip( dataset.keys(), dataset.values(), dataset_metadata ) ] else: dataset_metadata = [self.compute_dataset_metrics(dataset, dataset_metadata[0], self.trainer.loss)] # Try to get the number of training samples if dataset_type == "train": num_training_samples = sum([metadata.get("size", 0) for metadata in dataset_metadata]) if num_training_samples: self.add_tags(f"dataset_size:{num_training_samples}") return self.validate_datasets(dataset_metadata) def register_model(self, model: SentenceTransformer) -> None: self.model = model def set_model_id(self, model_id: str) -> None: self.model_id = model_id def set_base_model(self, model_id: str, revision: str | None = None) -> None: try: model_info = get_model_info(model_id) except Exception: # Getting the model info can fail for many reasons: model does not exist, no internet, outage, etc. return False self.base_model = model_info.id if revision is None or revision == "main": revision = model_info.sha self.base_model_revision = revision return True def set_language(self, language: str | list[str]) -> None: if isinstance(language, str): language = [language] self.language = language def set_license(self, license: str) -> None: self.license = license def add_tags(self, tags: str | list[str]) -> None: if isinstance(tags, str): tags = [tags] for tag in tags: if tag not in self.tags: self.tags.append(tag) def try_to_set_base_model(self) -> None: if isinstance(self.model[0], Transformer): base_model = self.model[0].auto_model.config._name_or_path base_model_path = Path(base_model) # Sometimes the name_or_path ends exactly with the model_id, e.g. # "C:\\Users\\tom/.cache\\torch\\sentence_transformers\\BAAI_bge-small-en-v1.5\\" candidate_model_ids = ["/".join(base_model_path.parts[-2:])] # Sometimes the name_or_path its final part contains the full model_id, with "/" replaced with a "_", e.g. # "/root/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v2/" # In that case, we take the last part, split on _, and try all combinations # e.g. "a_b_c_d" -> ['a/b_c_d', 'a_b/c_d', 'a_b_c/d'] splits = base_model_path.name.split("_") candidate_model_ids += [ "_".join(splits[:idx]) + "/" + "_".join(splits[idx:]) for idx in range(1, len(splits)) ] for model_id in candidate_model_ids: if self.set_base_model(model_id): break def format_eval_metrics(self) -> dict[str, Any]: """Format the evaluation metrics for the model card. The following keys will be returned: - eval_metrics: A list of dictionaries containing the class name, description, dataset name, and a markdown table This is used to display the evaluation metrics in the model card. - metrics: A list of all metric keys. This is used in the model card metadata. - model-index: A list of dictionaries containing the task name, task type, dataset type, dataset name, metric name, metric type, and metric value. This is used to display the evaluation metrics in the model card metadata. """ eval_metrics = [] all_metrics = {} eval_results = [] for evaluator, metrics in self.eval_results_dict.items(): name = getattr(evaluator, "name", None) primary_metric = getattr(evaluator, "primary_metric", None) if name and all(key.startswith(name + "_") for key in metrics.keys()): metrics = {key[len(name) + 1 :]: value for key, value in metrics.items()} if primary_metric and primary_metric.startswith(name + "_"): primary_metric = primary_metric[len(name) + 1 :] def try_to_pure_python(value: Any) -> Any: """Try to convert a value from a Numpy or Torch scalar to pure Python, if not already pure Python""" try: if hasattr(value, "dtype"): return value.item() except Exception: pass return value metrics = {key: try_to_pure_python(value) for key, value in metrics.items()} table_lines = [ { "Metric": f"**{metric_key}**" if metric_key == primary_metric else metric_key, "Value": f"**{round(metric_value, 4)}**" if metric_key == primary_metric else round(metric_value, 4), } for metric_key, metric_value in metrics.items() ] # E.g. "Binary Classification" or "Semantic Similarity" description = evaluator.description dataset_name = getattr(evaluator, "name", None) eval_metrics.append( { "class_name": fullname(evaluator), "description": description, "dataset_name": dataset_name, "table": make_markdown_table(table_lines).replace("-:|", "--|"), } ) eval_results.extend( [ EvalResult( task_name=description, task_type=description.lower().replace(" ", "-"), dataset_type=dataset_name or "unknown", dataset_name=dataset_name.replace("_", " ").replace("-", " ") or "Unknown", metric_name=metric_key.replace("_", " ").title(), metric_type=metric_key, metric_value=metric_value, ) for metric_key, metric_value in metrics.items() if isinstance(metric_value, (int, float)) ] ) all_metrics.update(metrics) return { "eval_metrics": eval_metrics, "metrics": list(all_metrics.keys()), "model-index": eval_results_to_model_index(self.model_name, eval_results), } def format_training_logs(self): # Get the keys from all evaluation lines eval_lines_keys = {key for lines in self.training_logs for key in lines.keys()} # Sort the metric columns: Epoch, Step, Training Loss, Validation Loss, Evaluator results def sort_metrics(key: str) -> str: if key == "Epoch": return "0" if key == "Step": return "1" if key == "Training Loss": return "2" if key.endswith("loss"): return "3" return key sorted_eval_lines_keys = sorted(eval_lines_keys, key=sort_metrics) training_logs = [ { key: f"**{round(line[key], 4) if key in line else '-'}**" if line["Step"] == self.best_model_step else line.get(key, "-") for key in sorted_eval_lines_keys } for line in self.training_logs ] eval_lines = make_markdown_table(training_logs) return { "eval_lines": eval_lines, "explain_bold_in_eval": "**" in eval_lines, } def get_codecarbon_data(self) -> dict[Literal["co2_eq_emissions"], dict[str, Any]]: emissions_data = self.code_carbon_callback.tracker._prepare_emissions_data() results = { "co2_eq_emissions": { # * 1000 to convert kg to g "emissions": float(emissions_data.emissions) * 1000, "energy_consumed": float(emissions_data.energy_consumed), "source": "codecarbon", "training_type": "fine-tuning", "on_cloud": emissions_data.on_cloud == "Y", "cpu_model": emissions_data.cpu_model, "ram_total_size": emissions_data.ram_total_size, "hours_used": round(emissions_data.duration / 3600, 3), } } if emissions_data.gpu_model: results["co2_eq_emissions"]["hardware_used"] = emissions_data.gpu_model return results def to_dict(self) -> dict[str, Any]: # Extract some meaningful examples from the evaluation or training dataset to showcase the performance if ( not self.widget and self.trainer is not None and (dataset := self.trainer.eval_dataset or self.trainer.train_dataset) ): self.set_widget_examples(dataset) # Try to set the base model if self.first_save and not self.base_model: try: self.try_to_set_base_model() except Exception: pass # Set the model name if not self.model_name: if self.base_model: self.model_name = f"SentenceTransformer based on {self.base_model}" else: self.model_name = "SentenceTransformer" super_dict = {field.name: getattr(self, field.name) for field in fields(self)} # Compute required formats from the (usually post-training) evaluation data if self.eval_results_dict: try: super_dict.update(self.format_eval_metrics()) except Exception as exc: logger.warning(f"Error while formatting evaluation metrics: {exc}") raise exc # Compute required formats for the during-training evaluation data if self.training_logs: try: super_dict.update(self.format_training_logs()) except Exception as exc: logger.warning(f"Error while formatting training logs: {exc}") super_dict["hide_eval_lines"] = len(self.training_logs) > 100 # Try to add the code carbon callback data if ( self.code_carbon_callback and self.code_carbon_callback.tracker and self.code_carbon_callback.tracker._start_time is not None ): super_dict.update(self.get_codecarbon_data()) # Add some additional metadata stored in the model itself super_dict["model_max_length"] = self.model.get_max_seq_length() super_dict["output_dimensionality"] = self.model.get_sentence_embedding_dimension() super_dict["model_string"] = str(self.model) if self.model.similarity_fn_name: super_dict["similarity_fn_name"] = { "cosine": "Cosine Similarity", "dot": "Dot Product", "euclidean": "Euclidean Distance", "manhattan": "Manhattan Distance", }.get(self.model.similarity_fn_name, self.model.similarity_fn_name.replace("_", " ").title()) else: super_dict["similarity_fn_name"] = "Cosine Similarity" self.first_save = False for key in IGNORED_FIELDS: super_dict.pop(key, None) return super_dict def to_yaml(self, line_break=None) -> str: return yaml_dump( {key: value for key, value in self.to_dict().items() if key in YAML_FIELDS and value not in (None, [])}, sort_keys=False, line_break=line_break, ).strip()
def generate_model_card(model: SentenceTransformer) -> str: template_path = Path(__file__).parent / "model_card_template.md" model_card = ModelCard.from_template(card_data=model.model_card_data, template_path=template_path, hf_emoji="🤗") return model_card.content