Shortcuts

可选:数据并行

创建于:2017年11月14日 | 最后更新:2018年11月19日 | 最后验证:2024年11月5日

作者: Sung KimJenny Kang

在本教程中,我们将学习如何使用DataParallel来使用多个GPU。

使用PyTorch与GPU非常容易。您可以将模型放在GPU上:

device = torch.device("cuda:0")
model.to(device)

然后,您可以将所有张量复制到GPU:

mytensor = my_tensor.to(device)

请注意,仅调用my_tensor.to(device)会在GPU上返回my_tensor的新副本,而不是重写my_tensor。您需要将其分配给一个新的张量,并在GPU上使用该张量。

在多GPU上执行前向和后向传播是很自然的。然而,Pytorch默认只会使用一个GPU。你可以通过使用DataParallel使你的模型并行运行,从而轻松地在多个GPU上运行你的操作:

model = nn.DataParallel(model)

这是本教程的核心内容。我们将在下面更详细地探讨它。

导入和参数

导入PyTorch模块并定义参数。

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

# Parameters and DataLoaders
input_size = 5
output_size = 2

batch_size = 30
data_size = 100

设备

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

虚拟数据集

创建一个虚拟(随机)数据集。你只需要实现 getitem

class RandomDataset(Dataset):

    def __init__(self, size, length):
        self.len = length
        self.data = torch.randn(length, size)

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return self.len

rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),
                         batch_size=batch_size, shuffle=True)

简单模型

对于演示,我们的模型只是获取一个输入,执行线性操作,并给出一个输出。然而,你可以在任何模型(CNN、RNN、胶囊网络等)上使用DataParallel

我们在模型中放置了一个打印语句来监控输入和输出张量的大小。 请注意在批次等级0时打印的内容。

class Model(nn.Module):
    # Our model

    def __init__(self, input_size, output_size):
        super(Model, self).__init__()
        self.fc = nn.Linear(input_size, output_size)

    def forward(self, input):
        output = self.fc(input)
        print("\tIn Model: input size", input.size(),
              "output size", output.size())

        return output

创建模型和数据并行

这是教程的核心部分。首先,我们需要创建一个模型实例并检查是否有多个GPU。如果有多个GPU,我们可以使用nn.DataParallel来包装我们的模型。然后我们可以通过model.to(device)将模型放到GPU上。

model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
  print("Let's use", torch.cuda.device_count(), "GPUs!")
  # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
  model = nn.DataParallel(model)

model.to(device)
Let's use 4 GPUs!

DataParallel(
  (module): Model(
    (fc): Linear(in_features=5, out_features=2, bias=True)
  )
)

运行模型

现在我们可以看到输入和输出张量的大小。

for data in rand_loader:
    input = data.to(device)
    output = model(input)
    print("Outside: input size", input.size(),
          "output_size", output.size())
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([6, 5]) output size torch.Size([6, 2])
/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py:125: UserWarning:

Attempting to run cuBLAS, but there was no current CUDA context! Attempting to set the primary context... (Triggered internally at ../aten/src/ATen/cuda/CublasHandlePool.cpp:135.)

        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([6, 5]) output size torch.Size([6, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
        In Model: input size torch.Size([6, 5]) output size torch.Size([6, 2])
        In Model: input size torch.Size([8, 5]) output size torch.Size([8, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([3, 5]) output size torch.Size([3, 2])
        In Model: input size torch.Size([3, 5]) output size torch.Size([3, 2])
        In Model: input size torch.Size([3, 5]) output size torch.Size([3, 2])
        In Model: input size torch.Size([1, 5]) output size torch.Size([1, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

结果

如果你没有GPU或只有一个GPU,当我们批量处理30个输入和30个输出时,模型会按预期得到30个输入并输出30个结果。但如果你有多个GPU,那么你可能会得到这样的结果。

2 个GPU

如果你有2,你会看到:

# on 2 GPUs
Let's use 2 GPUs!
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
    In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

3 个GPU

如果你有3个GPU,你会看到:

Let's use 3 GPUs!
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

8个GPU

如果你有8,你会看到:

Let's use 8 GPUs!
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

总结

DataParallel 自动分割您的数据,并将作业指令发送到多个 GPU 上的多个模型。在每个模型完成其作业后,DataParallel 收集并合并结果,然后将其返回给您。

欲了解更多信息,请查看 https://pytorch.org/tutorials/beginner/former_torchies/parallelism_tutorial.html

脚本总运行时间: ( 0 分钟 2.130 秒)

Gallery generated by Sphinx-Gallery