聊天大纲
这将帮助您开始使用Outlines的聊天模型。有关所有ChatOutlines功能和配置的详细文档,请访问API参考。
Outlines 是一个用于约束语言生成的库。它允许你在使用大型语言模型(LLMs)和各种后端的同时,对生成的输出应用约束。
概述
集成详情
类 | 包 | 本地 | 可序列化 | JS支持 | 包下载 | 包最新 |
---|---|---|---|---|---|---|
ChatOutlines | langchain-community | ✅ | ❌ | ❌ |
模型特性
工具调用 | 结构化输出 | JSON模式 | 图像输入 | 音频输入 | 视频输入 | 令牌级流式传输 | 原生异步 | 令牌使用 | Logprobs |
---|---|---|---|---|---|---|---|---|---|
✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
设置
要访问Outlines模型,您需要有一个互联网连接来从huggingface下载模型权重。根据您使用的后端,您需要安装所需的依赖项(请参阅Outlines文档)
凭证
Outlines 没有内置的认证机制。
安装
LangChain Outlines 集成位于 langchain-community
包中,并且需要 outlines
库:
%pip install -qU langchain-community outlines
实例化
现在我们可以实例化我们的模型对象并生成聊天完成:
from langchain_community.chat_models.outlines import ChatOutlines
# For llamacpp backend
model = ChatOutlines(model="TheBloke/phi-2-GGUF/phi-2.Q4_K_M.gguf", backend="llamacpp")
# For vllm backend (not available on Mac)
model = ChatOutlines(model="meta-llama/Llama-3.2-1B", backend="vllm")
# For mlxlm backend (only available on Mac)
model = ChatOutlines(model="mistralai/Ministral-8B-Instruct-2410", backend="mlxlm")
# For huggingface transformers backend
model = ChatOutlines(model="microsoft/phi-2") # defaults to transformers backend
API Reference:ChatOutlines
调用
from langchain_core.messages import HumanMessage
messages = [HumanMessage(content="What will the capital of mars be called?")]
response = model.invoke(messages)
response.content
API Reference:HumanMessage
流处理
ChatOutlines 支持令牌的流式传输:
messages = [HumanMessage(content="Count to 10 in French:")]
for chunk in model.stream(messages):
print(chunk.content, end="", flush=True)
链式调用
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | model
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API Reference:ChatPromptTemplate
受限生成
ChatOutlines 允许您对生成的输出应用各种约束:
正则表达式约束
model.regex = r"((25[0-5]|2[0-4]\d|[01]?\d\d?)\.){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)"
response = model.invoke("What is the IP address of Google's DNS server?")
response.content
类型约束
model.type_constraints = int
response = model.invoke("What is the answer to life, the universe, and everything?")
response.content
Pydantic 和 JSON 模式
from pydantic import BaseModel
class Person(BaseModel):
name: str
model.json_schema = Person
response = model.invoke("Who are the main contributors to LangChain?")
person = Person.model_validate_json(response.content)
person
上下文无关文法
model.grammar = """
?start: expression
?expression: term (("+" | "-") term)*
?term: factor (("*" | "/") factor)*
?factor: NUMBER | "-" factor | "(" expression ")"
%import common.NUMBER
%import common.WS
%ignore WS
"""
response = model.invoke("Give me a complex arithmetic expression:")
response.content
LangChain的结构化输出
你也可以使用LangChain的结构化输出与ChatOutlines:
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
answer: str
justification: str
_model = model.with_structured_output(AnswerWithJustification)
result = _model.invoke("What weighs more, a pound of bricks or a pound of feathers?")
result
API参考
有关所有ChatOutlines功能和配置的详细文档,请访问API参考:https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.outlines.ChatOutlines.html
完整大纲文档:
https://dottxt-ai.github.io/outlines/latest/