Skip to main content
Open In ColabOpen on GitHub

聊天大纲

这将帮助您开始使用Outlines的聊天模型。有关所有ChatOutlines功能和配置的详细文档,请访问API参考

Outlines 是一个用于约束语言生成的库。它允许你在使用大型语言模型(LLMs)和各种后端的同时,对生成的输出应用约束。

概述

集成详情

本地可序列化JS支持包下载包最新
ChatOutlineslangchain-communityPyPI - 下载量PyPI - 版本

模型特性

工具调用结构化输出JSON模式图像输入音频输入视频输入令牌级流式传输原生异步令牌使用Logprobs

设置

要访问Outlines模型,您需要有一个互联网连接来从huggingface下载模型权重。根据您使用的后端,您需要安装所需的依赖项(请参阅Outlines文档

凭证

Outlines 没有内置的认证机制。

安装

LangChain Outlines 集成位于 langchain-community 包中,并且需要 outlines 库:

%pip install -qU langchain-community outlines

实例化

现在我们可以实例化我们的模型对象并生成聊天完成:

from langchain_community.chat_models.outlines import ChatOutlines

# For llamacpp backend
model = ChatOutlines(model="TheBloke/phi-2-GGUF/phi-2.Q4_K_M.gguf", backend="llamacpp")

# For vllm backend (not available on Mac)
model = ChatOutlines(model="meta-llama/Llama-3.2-1B", backend="vllm")

# For mlxlm backend (only available on Mac)
model = ChatOutlines(model="mistralai/Ministral-8B-Instruct-2410", backend="mlxlm")

# For huggingface transformers backend
model = ChatOutlines(model="microsoft/phi-2") # defaults to transformers backend
API Reference:ChatOutlines

调用

from langchain_core.messages import HumanMessage

messages = [HumanMessage(content="What will the capital of mars be called?")]
response = model.invoke(messages)

response.content
API Reference:HumanMessage

流处理

ChatOutlines 支持令牌的流式传输:

messages = [HumanMessage(content="Count to 10 in French:")]

for chunk in model.stream(messages):
print(chunk.content, end="", flush=True)

链式调用

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)

chain = prompt | model
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API Reference:ChatPromptTemplate

受限生成

ChatOutlines 允许您对生成的输出应用各种约束:

正则表达式约束

model.regex = r"((25[0-5]|2[0-4]\d|[01]?\d\d?)\.){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)"

response = model.invoke("What is the IP address of Google's DNS server?")

response.content

类型约束

model.type_constraints = int
response = model.invoke("What is the answer to life, the universe, and everything?")

response.content

Pydantic 和 JSON 模式

from pydantic import BaseModel


class Person(BaseModel):
name: str


model.json_schema = Person
response = model.invoke("Who are the main contributors to LangChain?")
person = Person.model_validate_json(response.content)

person

上下文无关文法

model.grammar = """
?start: expression
?expression: term (("+" | "-") term)*
?term: factor (("*" | "/") factor)*
?factor: NUMBER | "-" factor | "(" expression ")"
%import common.NUMBER
%import common.WS
%ignore WS
"""
response = model.invoke("Give me a complex arithmetic expression:")

response.content

LangChain的结构化输出

你也可以使用LangChain的结构化输出与ChatOutlines:

from pydantic import BaseModel


class AnswerWithJustification(BaseModel):
answer: str
justification: str


_model = model.with_structured_output(AnswerWithJustification)
result = _model.invoke("What weighs more, a pound of bricks or a pound of feathers?")

result

API参考

有关所有ChatOutlines功能和配置的详细文档,请访问API参考:https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.outlines.ChatOutlines.html

完整大纲文档:

https://dottxt-ai.github.io/outlines/latest/


这个页面有帮助吗?