Skip to main content
Open In ColabOpen on GitHub

RAGatouille

RAGatouille 使得使用 ColBERT 变得非常简单!ColBERT 是一个快速且准确的检索模型,能够在几十毫秒内对大规模文本集合进行基于 BERT 的搜索。

请参阅ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction论文。

我们可以通过多种方式使用RAGatouille。

设置

集成位于ragatouille包中。

pip install -U ragatouille
from ragatouille import RAGPretrainedModel

RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
[Jan 10, 10:53:28] Loading segmented_maxsim_cpp extension (set COLBERT_LOAD_TORCH_EXTENSION_VERBOSE=True for more info)...
``````output
/Users/harrisonchase/.pyenv/versions/3.10.1/envs/langchain/lib/python3.10/site-packages/torch/cuda/amp/grad_scaler.py:125: UserWarning: torch.cuda.amp.GradScaler is enabled, but CUDA is not available. Disabling.
warnings.warn(

检索器

我们可以使用RAGatouille作为检索器。有关更多信息,请参阅RAGatouille Retriever

文档压缩器

我们也可以使用现成的RAGatouille作为重新排序器。这将使我们能够使用ColBERT对从任何通用检索器检索到的结果进行重新排序。这样做的好处是,我们可以在任何现有索引的基础上进行,因此我们不需要创建新的索引。我们可以通过使用LangChain中的文档压缩器抽象来实现这一点。

设置 Vanilla Retriever

首先,让我们设置一个普通的检索器作为示例。

import requests
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter


def get_wikipedia_page(title: str):
"""
Retrieve the full text content of a Wikipedia page.

:param title: str - Title of the Wikipedia page.
:return: str - Full text content of the page as raw string.
"""
# Wikipedia API endpoint
URL = "https://en.wikipedia.org/w/api.php"

# Parameters for the API request
params = {
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
}

# Custom User-Agent header to comply with Wikipedia's best practices
headers = {"User-Agent": "RAGatouille_tutorial/0.0.1 (ben@clavie.eu)"}

response = requests.get(URL, params=params, headers=headers)
data = response.json()

# Extracting page content
page = next(iter(data["query"]["pages"].values()))
return page["extract"] if "extract" in page else None


text = get_wikipedia_page("Hayao_Miyazaki")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
texts = text_splitter.create_documents([text])
retriever = FAISS.from_documents(texts, OpenAIEmbeddings()).as_retriever(
search_kwargs={"k": 10}
)
docs = retriever.invoke("What animation studio did Miyazaki found")
docs[0]
Document(page_content='collaborative projects. In April 1984, Miyazaki opened his own office in Suginami Ward, naming it Nibariki.')

我们可以看到,结果与所问的问题并不十分相关

使用ColBERT作为重新排序器

from langchain.retrievers import ContextualCompressionRetriever

compression_retriever = ContextualCompressionRetriever(
base_compressor=RAG.as_langchain_document_compressor(), base_retriever=retriever
)

compressed_docs = compression_retriever.invoke(
"What animation studio did Miyazaki found"
)
/Users/harrisonchase/.pyenv/versions/3.10.1/envs/langchain/lib/python3.10/site-packages/torch/amp/autocast_mode.py:250: UserWarning: User provided device_type of 'cuda', but CUDA is not available. Disabling
warnings.warn(
compressed_docs[0]
Document(page_content='In June 1985, Miyazaki, Takahata, Tokuma and Suzuki founded the animation production company Studio Ghibli, with funding from Tokuma Shoten. Studio Ghibli\'s first film, Laputa: Castle in the Sky (1986), employed the same production crew of Nausicaä. Miyazaki\'s designs for the film\'s setting were inspired by Greek architecture and "European urbanistic templates". Some of the architecture in the film was also inspired by a Welsh mining town; Miyazaki witnessed the mining strike upon his first', metadata={'relevance_score': 26.5194149017334})

这个答案更加相关!


这个页面有帮助吗?