Ray Serve
Ray Serve 是一个可扩展的模型服务库,用于构建在线推理API。Serve特别适合系统组合,使您能够构建一个由多个链和业务逻辑组成的复杂推理服务,全部使用Python代码。
本笔记本的目标
本笔记本展示了一个简单的示例,说明如何将OpenAI链部署到生产环境中。您可以扩展它以部署您自己的自托管模型,在其中可以轻松定义在生产环境中高效运行模型所需的硬件资源(GPU和CPU)数量。了解更多关于Ray Serve中可用选项(包括自动扩展)的信息,请参阅文档。
设置 Ray Serve
使用pip install ray[serve]
安装ray。
通用框架
部署服务的一般框架如下:
# 0: Import ray serve and request from starlette
from ray import serve
from starlette.requests import Request
# 1: Define a Ray Serve deployment.
@serve.deployment
class LLMServe:
def __init__(self) -> None:
# All the initialization code goes here
pass
async def __call__(self, request: Request) -> str:
# You can parse the request here
# and return a response
return "Hello World"
# 2: Bind the model to deployment
deployment = LLMServe.bind()
# 3: Run the deployment
serve.api.run(deployment)
# Shutdown the deployment
serve.api.shutdown()
使用自定义提示部署和OpenAI链的示例
从这里获取一个OpenAI API密钥。通过运行以下代码,您将被要求提供您的API密钥。
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
from getpass import getpass
OPENAI_API_KEY = getpass()
@serve.deployment
class DeployLLM:
def __init__(self):
# We initialize the LLM, template and the chain here
llm = OpenAI(openai_api_key=OPENAI_API_KEY)
template = "Question: {question}\n\nAnswer: Let's think step by step."
prompt = PromptTemplate.from_template(template)
self.chain = LLMChain(llm=llm, prompt=prompt)
def _run_chain(self, text: str):
return self.chain(text)
async def __call__(self, request: Request):
# 1. Parse the request
text = request.query_params["text"]
# 2. Run the chain
resp = self._run_chain(text)
# 3. Return the response
return resp["text"]
现在我们可以绑定部署。
# Bind the model to deployment
deployment = DeployLLM.bind()
我们可以在想要运行部署时分配端口号和主机。
# Example port number
PORT_NUMBER = 8282
# Run the deployment
serve.api.run(deployment, port=PORT_NUMBER)
现在服务已部署在端口 localhost:8282
上,我们可以发送一个 post 请求来获取结果。
import requests
text = "What NFL team won the Super Bowl in the year Justin Beiber was born?"
response = requests.post(f"http://localhost:{PORT_NUMBER}/?text={text}")
print(response.content.decode())