Skip to main content
Open In ColabOpen on GitHub

Pandas 数据框

本笔记本展示了如何使用代理与Pandas DataFrame进行交互。它主要针对问答进行了优化。

注意:此代理在底层调用了Python代理,该代理执行由LLM生成的Python代码 - 如果LLM生成的Python代码有害,这可能会很糟糕。请谨慎使用。

注意:由于langchain已迁移到v0.3版本,您应该升级langchain_openai和langchain。这将避免导入错误。

pip install --upgrade langchain_openai pip install --upgrade langchain

from langchain.agents.agent_types import AgentType
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
from langchain_openai import ChatOpenAI
import pandas as pd
from langchain_openai import OpenAI

df = pd.read_csv(
"https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv"
)
API Reference:OpenAI

使用 ZERO_SHOT_REACT_DESCRIPTION

这展示了如何使用ZERO_SHOT_REACT_DESCRIPTION代理类型初始化代理。

agent = create_pandas_dataframe_agent(OpenAI(temperature=0), df, verbose=True)

使用 OpenAI 函数

这展示了如何使用OPENAI_FUNCTIONS代理类型初始化代理。请注意,这是上述方法的替代方案。

agent = create_pandas_dataframe_agent(
ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613"),
df,
verbose=True,
agent_type=AgentType.OPENAI_FUNCTIONS,
)
agent.invoke("how many rows are there?")


> Entering new chain...

Invoking: `python_repl_ast` with `df.shape[0]`


891There are 891 rows in the dataframe.

> Finished chain.
'There are 891 rows in the dataframe.'
agent.invoke("how many people have more than 3 siblings")


> Entering new AgentExecutor chain...
Thought: I need to count the number of people with more than 3 siblings
Action: python_repl_ast
Action Input: df[df['SibSp'] > 3].shape[0]
Observation: 30
Thought: I now know the final answer
Final Answer: 30 people have more than 3 siblings.

> Finished chain.
'30 people have more than 3 siblings.'
agent.invoke("whats the square root of the average age?")


> Entering new AgentExecutor chain...
Thought: I need to calculate the average age first
Action: python_repl_ast
Action Input: df['Age'].mean()
Observation: 29.69911764705882
Thought: I now need to calculate the square root of the average age
Action: python_repl_ast
Action Input: math.sqrt(df['Age'].mean())
Observation: NameError("name 'math' is not defined")
Thought: I need to import the math library
Action: python_repl_ast
Action Input: import math
Observation: 
Thought: I now need to calculate the square root of the average age
Action: python_repl_ast
Action Input: math.sqrt(df['Age'].mean())
Observation: 5.449689683556195
Thought: I now know the final answer
Final Answer: The square root of the average age is 5.449689683556195.

> Finished chain.
'The square root of the average age is 5.449689683556195.'

多数据框示例

下一部分展示了代理如何与作为列表传递的多个数据框进行交互。

df1 = df.copy()
df1["Age"] = df1["Age"].fillna(df1["Age"].mean())
agent = create_pandas_dataframe_agent(OpenAI(temperature=0), [df, df1], verbose=True)
agent.invoke("how many rows in the age column are different?")


> Entering new AgentExecutor chain...
Thought: I need to compare the age columns in both dataframes
Action: python_repl_ast
Action Input: len(df1[df1['Age'] != df2['Age']])
Observation: 177
Thought: I now know the final answer
Final Answer: 177 rows in the age column are different.

> Finished chain.
'177 rows in the age column are different.'

这个页面有帮助吗?