Skip to main content
Open In ColabOpen on GitHub

ClickHouse

ClickHouse 是最快且资源效率最高的开源数据库,适用于实时应用和分析,具有完整的SQL支持和广泛的功能,帮助用户编写分析查询。最近添加的数据结构和距离搜索函数(如 L2Distance)以及 近似最近邻搜索索引 使 ClickHouse 能够用作高性能和可扩展的向量数据库,通过SQL存储和搜索向量。

本笔记本展示了如何使用与ClickHouse向量存储相关的功能。

设置

首先使用docker设置一个本地clickhouse服务器:

! docker run -d -p 8123:8123 -p9000:9000 --name langchain-clickhouse-server --ulimit nofile=262144:262144 clickhouse/clickhouse-server:23.4.2.11

你需要安装 langchain-communityclickhouse-connect 来使用这个集成

pip install -qU langchain-community clickhouse-connect

凭证

此笔记本没有凭据,只需确保您已安装如上所示的软件包。

如果你想获得最佳的模型调用自动追踪功能,你也可以通过取消下面的注释来设置你的LangSmith API密钥:

# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"

实例化

pip install -qU langchain-openai
import getpass
import os

if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")

from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
from langchain_community.vectorstores import Clickhouse, ClickhouseSettings

settings = ClickhouseSettings(table="clickhouse_example")
vector_store = Clickhouse(embeddings, config=settings)

管理向量存储

一旦你创建了你的向量存储,我们可以通过添加和删除不同的项目来与之交互。

添加项目到向量存储

我们可以使用add_documents函数向我们的向量存储中添加项目。

from uuid import uuid4

from langchain_core.documents import Document

document_1 = Document(
page_content="I had chocalate chip pancakes and scrambled eggs for breakfast this morning.",
metadata={"source": "tweet"},
)

document_2 = Document(
page_content="The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees.",
metadata={"source": "news"},
)

document_3 = Document(
page_content="Building an exciting new project with LangChain - come check it out!",
metadata={"source": "tweet"},
)

document_4 = Document(
page_content="Robbers broke into the city bank and stole $1 million in cash.",
metadata={"source": "news"},
)

document_5 = Document(
page_content="Wow! That was an amazing movie. I can't wait to see it again.",
metadata={"source": "tweet"},
)

document_6 = Document(
page_content="Is the new iPhone worth the price? Read this review to find out.",
metadata={"source": "website"},
)

document_7 = Document(
page_content="The top 10 soccer players in the world right now.",
metadata={"source": "website"},
)

document_8 = Document(
page_content="LangGraph is the best framework for building stateful, agentic applications!",
metadata={"source": "tweet"},
)

document_9 = Document(
page_content="The stock market is down 500 points today due to fears of a recession.",
metadata={"source": "news"},
)

document_10 = Document(
page_content="I have a bad feeling I am going to get deleted :(",
metadata={"source": "tweet"},
)

documents = [
document_1,
document_2,
document_3,
document_4,
document_5,
document_6,
document_7,
document_8,
document_9,
document_10,
]
uuids = [str(uuid4()) for _ in range(len(documents))]

vector_store.add_documents(documents=documents, ids=uuids)
API Reference:Document

从向量存储中删除项目

我们可以通过使用delete函数按ID从向量存储中删除项目。

vector_store.delete(ids=uuids[-1])

查询向量存储

一旦您的向量存储已创建并且相关文档已添加,您很可能希望在链或代理运行期间查询它。

直接查询

执行简单的相似性搜索可以按如下方式进行:

results = vector_store.similarity_search(
"LangChain provides abstractions to make working with LLMs easy", k=2
)
for res in results:
print(f"* {res.page_content} [{res.metadata}]")

带分数的相似性搜索

你也可以使用分数进行搜索:

results = vector_store.similarity_search_with_score("Will it be hot tomorrow?", k=1)
for res, score in results:
print(f"* [SIM={score:3f}] {res.page_content} [{res.metadata}]")

过滤

您可以直接访问ClickHouse SQL的where语句。您可以按照标准SQL编写WHERE子句。

注意: 请注意SQL注入问题,此接口不得由最终用户直接调用。

如果您在设置中自定义了column_map,您可以使用如下过滤器进行搜索:

meta = vector_store.metadata_column
results = vector_store.similarity_search_with_relevance_scores(
"What did I eat for breakfast?",
k=4,
where_str=f"{meta}.source = 'tweet'",
)
for res in results:
print(f"* {res.page_content} [{res.metadata}]")

其他搜索方法

本笔记本未涵盖其他多种搜索方法,例如MMR搜索或通过向量搜索。有关Clickhouse向量存储的完整搜索功能列表,请查看API参考

通过转换为检索器进行查询

你也可以将向量存储转换为检索器,以便在你的链中更轻松地使用。

以下是如何将您的向量存储转换为检索器,然后使用简单的查询和过滤器调用检索器。

retriever = vector_store.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"k": 1, "score_threshold": 0.5},
)
retriever.invoke("Stealing from the bank is a crime", filter={"source": "news"})

检索增强生成的使用

有关如何使用此向量存储进行检索增强生成(RAG)的指南,请参阅以下部分:

更多信息,请查看使用Astra DB的完整RAG模板这里

API 参考

有关所有Clickhouse功能和配置的详细文档,请参阅API参考:https://python.langchain.com/api_reference/community/vectorstores/langchain_community.vectorstores.clickhouse.Clickhouse.html


这个页面有帮助吗?