Microsoft Excel
UnstructuredExcelLoader
用于加载 Microsoft Excel
文件。该加载器适用于 .xlsx
和 .xls
文件。页面内容将是 Excel 文件的原始文本。如果您在 "elements"
模式下使用加载器,Excel 文件的 HTML 表示将可在文档元数据中的 text_as_html
键下找到。
请参阅本指南以获取有关在本地设置Unstructured的更多说明,包括设置所需的系统依赖项。
%pip install --upgrade --quiet langchain-community unstructured openpyxl
from langchain_community.document_loaders import UnstructuredExcelLoader
loader = UnstructuredExcelLoader("./example_data/stanley-cups.xlsx", mode="elements")
docs = loader.load()
print(len(docs))
docs
API Reference:UnstructuredExcelLoader
4
[Document(page_content='Stanley Cups', metadata={'source': './example_data/stanley-cups.xlsx', 'file_directory': './example_data', 'filename': 'stanley-cups.xlsx', 'last_modified': '2023-12-19T13:42:18', 'page_name': 'Stanley Cups', 'page_number': 1, 'languages': ['eng'], 'filetype': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', 'category': 'Title'}),
Document(page_content='\n\n\nTeam\nLocation\nStanley Cups\n\n\nBlues\nSTL\n1\n\n\nFlyers\nPHI\n2\n\n\nMaple Leafs\nTOR\n13\n\n\n', metadata={'source': './example_data/stanley-cups.xlsx', 'file_directory': './example_data', 'filename': 'stanley-cups.xlsx', 'last_modified': '2023-12-19T13:42:18', 'page_name': 'Stanley Cups', 'page_number': 1, 'text_as_html': '<table border="1" class="dataframe">\n <tbody>\n <tr>\n <td>Team</td>\n <td>Location</td>\n <td>Stanley Cups</td>\n </tr>\n <tr>\n <td>Blues</td>\n <td>STL</td>\n <td>1</td>\n </tr>\n <tr>\n <td>Flyers</td>\n <td>PHI</td>\n <td>2</td>\n </tr>\n <tr>\n <td>Maple Leafs</td>\n <td>TOR</td>\n <td>13</td>\n </tr>\n </tbody>\n</table>', 'languages': ['eng'], 'parent_id': '17e9a90f9616f2abed8cf32b5bd3810d', 'filetype': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', 'category': 'Table'}),
Document(page_content='Stanley Cups Since 67', metadata={'source': './example_data/stanley-cups.xlsx', 'file_directory': './example_data', 'filename': 'stanley-cups.xlsx', 'last_modified': '2023-12-19T13:42:18', 'page_name': 'Stanley Cups Since 67', 'page_number': 2, 'languages': ['eng'], 'filetype': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', 'category': 'Title'}),
Document(page_content='\n\n\nTeam\nLocation\nStanley Cups\n\n\nBlues\nSTL\n1\n\n\nFlyers\nPHI\n2\n\n\nMaple Leafs\nTOR\n0\n\n\n', metadata={'source': './example_data/stanley-cups.xlsx', 'file_directory': './example_data', 'filename': 'stanley-cups.xlsx', 'last_modified': '2023-12-19T13:42:18', 'page_name': 'Stanley Cups Since 67', 'page_number': 2, 'text_as_html': '<table border="1" class="dataframe">\n <tbody>\n <tr>\n <td>Team</td>\n <td>Location</td>\n <td>Stanley Cups</td>\n </tr>\n <tr>\n <td>Blues</td>\n <td>STL</td>\n <td>1</td>\n </tr>\n <tr>\n <td>Flyers</td>\n <td>PHI</td>\n <td>2</td>\n </tr>\n <tr>\n <td>Maple Leafs</td>\n <td>TOR</td>\n <td>0</td>\n </tr>\n </tbody>\n</table>', 'languages': ['eng'], 'parent_id': 'ee34bd8c186b57e3530d5443ffa58122', 'filetype': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', 'category': 'Table'})]
使用 Azure AI 文档智能
Azure AI 文档智能(以前称为
Azure Form Recognizer
)是一种基于机器学习的服务,可以从数字或扫描的PDF、图像、Office和HTML文件中提取文本(包括手写)、表格、文档结构(例如标题、章节标题等)和键值对。文档智能支持
JPEG/JPG
,PNG
,BMP
,TIFF
,HEIF
,DOCX
,XLSX
,PPTX
和HTML
。
当前使用Document Intelligence
实现的加载器可以逐页整合内容并将其转换为LangChain文档。默认输出格式为markdown,可以轻松与MarkdownHeaderTextSplitter
链接以进行语义文档分块。您还可以使用mode="single"
或mode="page"
来返回单页中的纯文本或按页分割的文档。
先决条件
一个位于以下三个预览区域之一的Azure AI文档智能资源:美国东部、美国西部2、西欧 - 如果您没有,请按照此文档创建一个。您将传递
和
作为加载器的参数。
%pip install --upgrade --quiet langchain langchain-community azure-ai-documentintelligence
from langchain_community.document_loaders import AzureAIDocumentIntelligenceLoader
file_path = "<filepath>"
endpoint = "<endpoint>"
key = "<key>"
loader = AzureAIDocumentIntelligenceLoader(
api_endpoint=endpoint, api_key=key, file_path=file_path, api_model="prebuilt-layout"
)
documents = loader.load()
API Reference:AzureAIDocumentIntelligenceLoader