Skip to main content
Open In ColabOpen on GitHub

StarRocks

StarRocks 是一个高性能分析数据库。 StarRocks 是一个面向全分析场景的下一代亚秒级MPP数据库,包括多维分析、实时分析和即席查询。

通常StarRocks被归类为OLAP,并且它在ClickBench — 分析型数据库管理系统基准测试中表现出色。由于它拥有超快的向量化执行引擎,它也可以用作快速的向量数据库。

这里我们将展示如何使用StarRocks向量存储。

设置

%pip install --upgrade --quiet  pymysql langchain-community

在开始时设置 update_vectordb = False。如果没有文档更新,那么我们不需要重新构建文档的嵌入

from langchain.chains import RetrievalQA
from langchain_community.document_loaders import (
DirectoryLoader,
UnstructuredMarkdownLoader,
)
from langchain_community.vectorstores import StarRocks
from langchain_community.vectorstores.starrocks import StarRocksSettings
from langchain_openai import OpenAI, OpenAIEmbeddings
from langchain_text_splitters import TokenTextSplitter

update_vectordb = False
/Users/dirlt/utils/py3env/lib/python3.9/site-packages/requests/__init__.py:102: RequestsDependencyWarning: urllib3 (1.26.7) or chardet (5.1.0)/charset_normalizer (2.0.9) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({})/charset_normalizer ({}) doesn't match a supported "

加载文档并将其分割成标记

加载docs目录下的所有markdown文件

对于StarRocks文档,您可以从https://github.com/StarRocks/starrocks克隆仓库,其中包含docs目录。

loader = DirectoryLoader(
"./docs", glob="**/*.md", loader_cls=UnstructuredMarkdownLoader
)
documents = loader.load()

将文档分割成标记,并设置update_vectordb = True,因为有新的文档/标记。

# load text splitter and split docs into snippets of text
text_splitter = TokenTextSplitter(chunk_size=400, chunk_overlap=50)
split_docs = text_splitter.split_documents(documents)

# tell vectordb to update text embeddings
update_vectordb = True
split_docs[-20]
Document(page_content='Compile StarRocks with Docker\n\nThis topic describes how to compile StarRocks using Docker.\n\nOverview\n\nStarRocks provides development environment images for both Ubuntu 22.04 and CentOS 7.9. With the image, you can launch a Docker container and compile StarRocks in the container.\n\nStarRocks version and DEV ENV image\n\nDifferent branches of StarRocks correspond to different development environment images provided on StarRocks Docker Hub.\n\nFor Ubuntu 22.04:\n\n| Branch name | Image name              |\n  | --------------- | ----------------------------------- |\n  | main            | starrocks/dev-env-ubuntu:latest     |\n  | branch-3.0      | starrocks/dev-env-ubuntu:3.0-latest |\n  | branch-2.5      | starrocks/dev-env-ubuntu:2.5-latest |\n\nFor CentOS 7.9:\n\n| Branch name | Image name                       |\n  | --------------- | ------------------------------------ |\n  | main            | starrocks/dev-env-centos7:latest     |\n  | branch-3.0      | starrocks/dev-env-centos7:3.0-latest |\n  | branch-2.5      | starrocks/dev-env-centos7:2.5-latest |\n\nPrerequisites\n\nBefore compiling StarRocks, make sure the following requirements are satisfied:\n\nHardware\n\n', metadata={'source': 'docs/developers/build-starrocks/Build_in_docker.md'})
print("# docs  = %d, # splits = %d" % (len(documents), len(split_docs)))
# docs  = 657, # splits = 2802

创建 vectordb 实例

使用 StarRocks 作为向量数据库

def gen_starrocks(update_vectordb, embeddings, settings):
if update_vectordb:
docsearch = StarRocks.from_documents(split_docs, embeddings, config=settings)
else:
docsearch = StarRocks(embeddings, settings)
return docsearch

将标记转换为嵌入并将其放入vectordb

这里我们使用StarRocks作为向量数据库,你可以通过StarRocksSettings配置StarRocks实例。

配置StarRocks实例与配置mysql实例非常相似。您需要指定:

  1. 主机/端口
  2. 用户名(默认:'root')
  3. 密码(默认值:'')
  4. 数据库(默认:'default')
  5. 表格(默认:'langchain')
embeddings = OpenAIEmbeddings()

# configure starrocks settings(host/port/user/pw/db)
settings = StarRocksSettings()
settings.port = 41003
settings.host = "127.0.0.1"
settings.username = "root"
settings.password = ""
settings.database = "zya"
docsearch = gen_starrocks(update_vectordb, embeddings, settings)

print(docsearch)

update_vectordb = False
Inserting data...: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2802/2802 [02:26<00:00, 19.11it/s]
``````output
zya.langchain @ 127.0.0.1:41003

username: root

Table Schema:
----------------------------------------------------------------------------
|name |type |key |
----------------------------------------------------------------------------
|id |varchar(65533) |true |
|document |varchar(65533) |false |
|embedding |array<float> |false |
|metadata |varchar(65533) |false |
----------------------------------------------------------------------------

构建QA并向其提问

llm = OpenAI()
qa = RetrievalQA.from_chain_type(
llm=llm, chain_type="stuff", retriever=docsearch.as_retriever()
)
query = "is profile enabled by default? if not, how to enable profile?"
resp = qa.run(query)
print(resp)
 No, profile is not enabled by default. To enable profile, set the variable `enable_profile` to `true` using the command `set enable_profile = true;`

这个页面有帮助吗?