Skip to main content
Open In ColabOpen on GitHub

Deep Lake

Deep Lake 是一个用于构建AI应用的多模态数据库 Deep Lake 是一个用于AI的数据库。 存储向量、图像、文本、视频等。与LLMs/LangChain一起使用。存储、查询、版本控制, & 可视化任何AI数据。实时将数据流式传输到PyTorch/TensorFlow。

在笔记本中,我们将演示围绕Deep Lake向量存储的SelfQueryRetriever

创建 Deep Lake 向量存储

首先,我们需要创建一个Deep Lake向量存储并用一些数据填充它。我们已经创建了一个包含电影摘要的小型演示文档集。

注意: 自查询检索器需要你安装 lark (pip install lark)。我们还需要 deeplake 包。

%pip install --upgrade --quiet  lark
# in case if some queries fail consider installing libdeeplake manually
%pip install --upgrade --quiet libdeeplake

我们想要使用OpenAIEmbeddings,所以我们必须获取OpenAI API密钥。

import getpass
import os

if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
if "ACTIVELOOP_TOKEN" not in os.environ:
os.environ["ACTIVELOOP_TOKEN"] = getpass.getpass("Activeloop token:")
from langchain_community.vectorstores import DeepLake
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings()
docs = [
Document(
page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"},
),
Document(
page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...",
metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2},
),
Document(
page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea",
metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6},
),
Document(
page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them",
metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3},
),
Document(
page_content="Toys come alive and have a blast doing so",
metadata={"year": 1995, "genre": "animated"},
),
Document(
page_content="Three men walk into the Zone, three men walk out of the Zone",
metadata={
"year": 1979,
"director": "Andrei Tarkovsky",
"genre": "science fiction",
"rating": 9.9,
},
),
]
username_or_org = "<USERNAME_OR_ORG>"
vectorstore = DeepLake.from_documents(
docs,
embeddings,
dataset_path=f"hub://{username_or_org}/self_queery",
overwrite=True,
)
Your Deep Lake dataset has been successfully created!
``````output
/
``````output
Dataset(path='hub://adilkhan/self_queery', tensors=['embedding', 'id', 'metadata', 'text'])

tensor htype shape dtype compression
------- ------- ------- ------- -------
embedding embedding (6, 1536) float32 None
id text (6, 1) str None
metadata json (6, 1) str None
text text (6, 1) str None

创建我们的自查询检索器

现在我们可以实例化我们的检索器。为此,我们需要提前提供一些关于我们的文档支持的元数据字段的信息以及文档内容的简短描述。

from langchain.chains.query_constructor.schema import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI

metadata_field_info = [
AttributeInfo(
name="genre",
description="The genre of the movie",
type="string or list[string]",
),
AttributeInfo(
name="year",
description="The year the movie was released",
type="integer",
),
AttributeInfo(
name="director",
description="The name of the movie director",
type="string",
),
AttributeInfo(
name="rating", description="A 1-10 rating for the movie", type="float"
),
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)

测试一下

现在我们可以尝试实际使用我们的检索器了!

# This example only specifies a relevant query
retriever.invoke("What are some movies about dinosaurs")
/home/ubuntu/langchain_activeloop/langchain/libs/langchain/langchain/chains/llm.py:279: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.
warnings.warn(
``````output
query='dinosaur' filter=None limit=None
[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),
Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'}),
Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'}),
Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6})]
# This example only specifies a filter
retriever.invoke("I want to watch a movie rated higher than 8.5")

# in case if this example errored out, consider installing libdeeplake manually: `pip install libdeeplake`, and then restart notebook.
query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5) limit=None
[Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6}),
Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})]
# This example specifies a query and a filter
retriever.invoke("Has Greta Gerwig directed any movies about women")
query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig') limit=None
[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'year': 2019, 'director': 'Greta Gerwig', 'rating': 8.3})]
# This example specifies a composite filter
retriever.invoke("What's a highly rated (above 8.5) science fiction film?")
query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GTE: 'gte'>, attribute='rating', value=8.5), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction')]) limit=None
[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})]
# This example specifies a query and composite filter
retriever.invoke(
"What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated"
)
query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated')]) limit=None
[Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]

筛选 k

我们也可以使用自我查询检索器来指定k:要获取的文档数量。

我们可以通过将enable_limit=True传递给构造函数来实现这一点。

retriever = SelfQueryRetriever.from_llm(
llm,
vectorstore,
document_content_description,
metadata_field_info,
enable_limit=True,
verbose=True,
)
# This example only specifies a relevant query
retriever.invoke("what are two movies about dinosaurs")
query='dinosaur' filter=None limit=2
[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),
Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]

这个页面有帮助吗?