- Installation
- Guides
- Overview
- SQL Features
- Data Import & Export
- CSV Import
- CSV Export
- Parquet Import
- Parquet Export
- Query Parquet
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- JSON Import
- JSON Export
- Excel Import
- Excel Export
- SQLite Import
- Postgres Import
- Meta Queries
- Python
- Install
- Execute SQL
- Jupyter Notebooks
- SQL on Pandas
- Import From Pandas
- Export To Pandas
- SQL on Arrow
- Import From Arrow
- Export To Arrow
- Relational API on Pandas
- Multiple Python Threads
- DuckDB with Ibis
- DuckDB with Fugue
- DuckDB with Polars
- DuckDB with Vaex
- DuckDB with DataFusion
- DuckDB with fsspec filesystems
- SQL Editors
- Data Viewers
- Documentation
- Connect
- Data Import
- Overview
- CSV Files
- JSON Files
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- Insert Statements
- Client APIs
- Overview
- C
- Overview
- Startup
- Configure
- Query
- Data Chunks
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Java
- Julia
- Node.js
- ODBC
- Python
- Overview
- Data Ingestion
- Result Conversion
- DB API
- Relational API
- Function API
- Types API
- API Reference
- R
- Rust
- Scala
- Swift
- Wasm
- SQL
- Introduction
- Statements
- Overview
- Alter Table
- Attach/Detach
- Call
- Checkpoint
- Copy
- Create Macro
- Create Schema
- Create Sequence
- Create Table
- Create View
- Delete
- Drop
- Export
- Insert
- Pivot
- Select
- Set/Reset
- Unpivot
- Update
- Use
- Vacuum
- Query Syntax
- SELECT
- FROM & JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT
- SAMPLE
- UNNEST
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Data Types
- Overview
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Map
- NULL Values
- Numeric
- Struct
- Text
- Timestamp
- Union
- Expressions
- Functions
- Overview
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp With Time Zone Functions
- Utility Functions
- Aggregates
- Configuration
- Constraints
- Indexes
- Information Schema
- Metadata Functions
- Pragmas
- Samples
- Window Functions
- Extensions
- Sitemap
- Why DuckDB
- Media
- FAQ
- Code of Conduct
- Live Demo
The postgres
extension allows DuckDB to directly read data from a running Postgres instance. The data can be queried directly from the underlying Postgres tables, or read into DuckDB tables.
Loading the Extension
In order to use the Postgres extension it must first be installed and loaded. This can be done using the following commands:
INSTALL postgres;
LOAD postgres;
Usage
To make a Postgres database accessible to DuckDB, use the POSTGRES_ATTACH
command:
-- load all data from "public" schema of the postgres instance running on localhost into the schema "main"
CALL POSTGRES_ATTACH('');
-- attach the database with the given schema, loading tables from the source schema "public" into the target schema "abc"
CALL postgres_attach('dbname=postgres user=postgres host=127.0.0.1', source_schema='public', sink_schema='abc');
POSTGRES_ATTACH
takes a single required string parameter, which is the libpq
connection string. For example you can pass 'dbname=postgresscanner'
to select a different database name. In the simplest case, the parameter is just ''
. There are three additional named parameters:
source_schema
the name of a non-standard schema name in Postgres to get tables from. Default ispublic
.sink_schema
the schema name in DuckDB to create views. Default ismain
.overwrite
whether we should overwrite existing views in the target schema, default isfalse
.filter_pushdown
whether filter predicates that DuckDB derives from the query should be forwarded to Postgres, defaults tofalse
.
The tables in the database are registered as views in DuckDB, you can list them as follows:
PRAGMA show_tables;
Then you can query those views normally using SQL.
Querying individual tables
If you prefer to not attach all tables, but just query a single table, that is possible using the POSTGRES_SCAN
function, e.g.
SELECT * FROM POSTGRES_SCAN('', 'public', 'mytable');
POSTGRES_SCAN
takes three string parameters, the libpq
connection string (see above), a Postgres schema name and a table name. The schema name is often public
.
To use filter_pushdown
use the POSTGRES_SCAN_PUSHDOWN
function.
Extra Information
See the repo for the source code of the extension, or the official announcement for implementation details and background.