Skip to main content
Open In ColabOpen on GitHub

Arcee

本笔记本演示了如何使用Arcee类通过Arcee的领域适应语言模型(DALMs)生成文本。

##Installing the langchain packages needed to use the integration
%pip install -qU langchain-community

设置

在使用Arcee之前,请确保Arcee API密钥已设置为ARCEE_API_KEY环境变量。您也可以将API密钥作为命名参数传递。

from langchain_community.llms import Arcee

# Create an instance of the Arcee class
arcee = Arcee(
model="DALM-PubMed",
# arcee_api_key="ARCEE-API-KEY" # if not already set in the environment
)
API Reference:Arcee

额外配置

您还可以根据需要配置Arcee的参数,例如arcee_api_urlarcee_app_urlmodel_kwargs。 在对象初始化时设置model_kwargs会将参数作为所有后续生成响应的默认值。

arcee = Arcee(
model="DALM-Patent",
# arcee_api_key="ARCEE-API-KEY", # if not already set in the environment
arcee_api_url="https://custom-api.arcee.ai", # default is https://api.arcee.ai
arcee_app_url="https://custom-app.arcee.ai", # default is https://app.arcee.ai
model_kwargs={
"size": 5,
"filters": [
{
"field_name": "document",
"filter_type": "fuzzy_search",
"value": "Einstein",
}
],
},
)

生成文本

你可以通过提供一个提示从Arcee生成文本。这里有一个例子:

# Generate text
prompt = "Can AI-driven music therapy contribute to the rehabilitation of patients with disorders of consciousness?"
response = arcee(prompt)

附加参数

Arcee 允许你应用 filters 并设置检索文档的 size(以数量计)以帮助文本生成。过滤器有助于缩小结果范围。以下是这些参数的使用方法:

# Define filters
filters = [
{"field_name": "document", "filter_type": "fuzzy_search", "value": "Einstein"},
{"field_name": "year", "filter_type": "strict_search", "value": "1905"},
]

# Generate text with filters and size params
response = arcee(prompt, size=5, filters=filters)

这个页面有帮助吗?