find_datetime_variables#
使用 find_datetime_variables()
,你可以自动捕获数据集中所有日期时间变量的名称,无论它们是被解析为日期时间类型还是对象类型。
让我们创建一个包含数值、分类和日期时间变量的玩具数据集:
import pandas as pd
from sklearn.datasets import make_classification
X, y = make_classification(
n_samples=1000,
n_features=4,
n_redundant=1,
n_clusters_per_class=1,
weights=[0.50],
class_sep=2,
random_state=1,
)
# transform arrays into pandas df and series
colnames = [f"num_var_{i+1}" for i in range(4)]
X = pd.DataFrame(X, columns=colnames)
X["cat_var1"] = ["Hello"] * 1000
X["cat_var2"] = ["Bye"] * 1000
X["date1"] = pd.date_range("2020-02-24", periods=1000, freq="T")
X["date2"] = pd.date_range("2021-09-29", periods=1000, freq="H")
X["date3"] = ["2020-02-24"] * 1000
print(X.head())
我们在下面看到生成的数据框:
num_var_1 num_var_2 num_var_3 num_var_4 cat_var1 cat_var2 \
0 -1.558594 1.634123 1.556932 2.869318 Hello Bye
1 1.499925 1.651008 1.159977 2.510196 Hello Bye
2 0.277127 -0.263527 0.532159 0.274491 Hello Bye
3 -1.139190 -1.131193 2.296540 1.189781 Hello Bye
4 -0.530061 -2.280109 2.469580 0.365617 Hello Bye
date1 date2 date3
0 2020-02-24 00:00:00 2021-09-29 00:00:00 2020-02-24
1 2020-02-24 00:01:00 2021-09-29 01:00:00 2020-02-24
2 2020-02-24 00:02:00 2021-09-29 02:00:00 2020-02-24
3 2020-02-24 00:03:00 2021-09-29 03:00:00 2020-02-24
4 2020-02-24 00:04:00 2021-09-29 04:00:00 2020-02-24
数据框有3个日期时间变量,其中两个是datetime类型,一个是object类型。
我们现在可以使用 find_datetime_variables()
来捕获所有日期时间变量,无论它们的数据类型如何。所以让我们这样做,然后显示列表:
from feature_engine.variable_handling import find_datetime_variables
var_date = find_datetime_variables(X)
var_date
下面我们看到了列表中的变量名:
['date1', 'date2', 'date3']
注意 find_datetime_variables()
捕获了所有3个日期时间变量。前两个是datetime类型,而第三个变量是object类型。但由于它可以被解析为datetime,因此也会被捕获在列表中。