Fiddler
Fiddler 是企业生成式和预测式系统运营的先驱,提供了一个统一的平台,使数据科学、MLOps、风险、合规、分析和其他业务线团队能够监控、解释、分析并改进企业规模的机器学习部署。
1. 安装与设置
#!pip install langchain langchain-community langchain-openai fiddler-client
2. Fiddler 连接详情
在使用Fiddler添加模型信息之前
- 您用于连接到Fiddler的URL
- 您的组织ID
- 您的授权令牌
这些可以通过导航到您的Fiddler环境的设置页面找到。
URL = "" # Your Fiddler instance URL, Make sure to include the full URL (including https://). For example: https://demo.fiddler.ai
ORG_NAME = ""
AUTH_TOKEN = "" # Your Fiddler instance auth token
# Fiddler project and model names, used for model registration
PROJECT_NAME = ""
MODEL_NAME = "" # Model name in Fiddler
3. 创建一个fiddler回调处理程序实例
from langchain_community.callbacks.fiddler_callback import FiddlerCallbackHandler
fiddler_handler = FiddlerCallbackHandler(
url=URL,
org=ORG_NAME,
project=PROJECT_NAME,
model=MODEL_NAME,
api_key=AUTH_TOKEN,
)
API Reference:FiddlerCallbackHandler
示例 1 : 基础链
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import OpenAI
# Note : Make sure openai API key is set in the environment variable OPENAI_API_KEY
llm = OpenAI(temperature=0, streaming=True, callbacks=[fiddler_handler])
output_parser = StrOutputParser()
chain = llm | output_parser
# Invoke the chain. Invocation will be logged to Fiddler, and metrics automatically generated
chain.invoke("How far is moon from earth?")
API Reference:StrOutputParser | OpenAI
# Few more invocations
chain.invoke("What is the temperature on Mars?")
chain.invoke("How much is 2 + 200000?")
chain.invoke("Which movie won the oscars this year?")
chain.invoke("Can you write me a poem about insomnia?")
chain.invoke("How are you doing today?")
chain.invoke("What is the meaning of life?")
示例 2 : 使用提示模板的链
from langchain_core.prompts import (
ChatPromptTemplate,
FewShotChatMessagePromptTemplate,
)
examples = [
{"input": "2+2", "output": "4"},
{"input": "2+3", "output": "5"},
]
example_prompt = ChatPromptTemplate.from_messages(
[
("human", "{input}"),
("ai", "{output}"),
]
)
few_shot_prompt = FewShotChatMessagePromptTemplate(
example_prompt=example_prompt,
examples=examples,
)
final_prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a wondrous wizard of math."),
few_shot_prompt,
("human", "{input}"),
]
)
# Note : Make sure openai API key is set in the environment variable OPENAI_API_KEY
llm = OpenAI(temperature=0, streaming=True, callbacks=[fiddler_handler])
chain = final_prompt | llm
# Invoke the chain. Invocation will be logged to Fiddler, and metrics automatically generated
chain.invoke({"input": "What's the square of a triangle?"})
API Reference:ChatPromptTemplate | FewShotChatMessagePromptTemplate