Skip to main content
Open on GitHub

LLMonitor

LLMonitor 是一个开源的观测平台,提供成本和使用分析、用户跟踪、追踪和评估工具。

设置

llmonitor.com上创建一个账户,然后复制你新应用的tracking id

一旦你有了它,通过运行以下命令将其设置为环境变量:

export LLMONITOR_APP_ID="..."

如果您不想设置环境变量,您可以在初始化回调处理程序时直接传递密钥:

from langchain_community.callbacks.llmonitor_callback import LLMonitorCallbackHandler

handler = LLMonitorCallbackHandler(app_id="...")

与LLM/聊天模型的使用

from langchain_openai import OpenAI
from langchain_openai import ChatOpenAI

handler = LLMonitorCallbackHandler()

llm = OpenAI(
callbacks=[handler],
)

chat = ChatOpenAI(callbacks=[handler])

llm("Tell me a joke")

API Reference:OpenAI | ChatOpenAI

与链和代理的使用

确保将回调处理程序传递给run方法,以便正确跟踪所有相关的链和llm调用。

还建议在元数据中传递agent_name,以便能够在仪表板中区分不同的代理。

示例:

from langchain_openai import ChatOpenAI
from langchain_community.callbacks.llmonitor_callback import LLMonitorCallbackHandler
from langchain_core.messages import SystemMessage, HumanMessage
from langchain.agents import OpenAIFunctionsAgent, AgentExecutor, tool

llm = ChatOpenAI(temperature=0)

handler = LLMonitorCallbackHandler()

@tool
def get_word_length(word: str) -> int:
"""Returns the length of a word."""
return len(word)

tools = [get_word_length]

prompt = OpenAIFunctionsAgent.create_prompt(
system_message=SystemMessage(
content="You are very powerful assistant, but bad at calculating lengths of words."
)
)

agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt, verbose=True)
agent_executor = AgentExecutor(
agent=agent, tools=tools, verbose=True, metadata={"agent_name": "WordCount"} # <- recommended, assign a custom name
)
agent_executor.run("how many letters in the word educa?", callbacks=[handler])

另一个例子:

from langchain.agents import load_tools, initialize_agent, AgentType
from langchain_openai import OpenAI
from langchain_community.callbacks.llmonitor_callback import LLMonitorCallbackHandler


handler = LLMonitorCallbackHandler()

llm = OpenAI(temperature=0)
tools = load_tools(["serpapi", "llm-math"], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, metadata={ "agent_name": "GirlfriendAgeFinder" }) # <- recommended, assign a custom name

agent.run(
"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?",
callbacks=[handler],
)

用户追踪

用户跟踪允许您识别您的用户,跟踪他们的成本、对话等。

from langchain_community.callbacks.llmonitor_callback import LLMonitorCallbackHandler, identify

with identify("user-123"):
llm.invoke("Tell me a joke")

with identify("user-456", user_props={"email": "user456@test.com"}):
agent.run("Who is Leo DiCaprio's girlfriend?")

支持

对于集成过程中的任何问题或疑问,您可以通过Discord电子邮件联系LLMonitor团队。


这个页面有帮助吗?