Skip to main content
Open In ColabOpen on GitHub

Facebook Messenger

本笔记本展示了如何从Facebook加载数据,以便您可以进行微调。总体步骤如下:

  1. 将您的信使数据下载到磁盘。
  2. 创建聊天加载器并调用 loader.load()(或 loader.lazy_load())以执行转换。
  3. 可选地使用merge_chat_runs来合并来自同一发送者的连续消息,和/或使用map_ai_messages将来自指定发送者的消息转换为"AIMessage"类。完成这些操作后,调用convert_messages_for_finetuning来准备你的数据进行微调。

完成此操作后,您可以微调您的模型。为此,您需要完成以下步骤:

  1. 将您的消息上传到OpenAI并运行微调任务。
  2. 在您的LangChain应用中使用生成的模型!

让我们开始吧。

1. 下载数据

要下载您自己的Messenger数据,请按照这里的说明操作。重要提示 - 确保以JSON格式(而不是HTML)下载它们。

我们在这个教程中使用的一个示例转储托管在这个谷歌驱动器链接上。

# This uses some example data
import zipfile

import requests


def download_and_unzip(url: str, output_path: str = "file.zip") -> None:
file_id = url.split("/")[-2]
download_url = f"https://drive.google.com/uc?export=download&id={file_id}"

response = requests.get(download_url)
if response.status_code != 200:
print("Failed to download the file.")
return

with open(output_path, "wb") as file:
file.write(response.content)
print(f"File {output_path} downloaded.")

with zipfile.ZipFile(output_path, "r") as zip_ref:
zip_ref.extractall()
print(f"File {output_path} has been unzipped.")


# URL of the file to download
url = (
"https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing"
)

# Download and unzip
download_and_unzip(url)
File file.zip downloaded.
File file.zip has been unzipped.

2. 创建聊天加载器

我们有2个不同的FacebookMessengerChatLoader类,一个用于整个聊天目录,另一个用于加载单个文件。

directory_path = "./hogwarts"
from langchain_community.chat_loaders.facebook_messenger import (
FolderFacebookMessengerChatLoader,
SingleFileFacebookMessengerChatLoader,
)
loader = SingleFileFacebookMessengerChatLoader(
path="./hogwarts/inbox/HermioneGranger/messages_Hermione_Granger.json",
)
chat_session = loader.load()[0]
chat_session["messages"][:3]
[HumanMessage(content="Hi Hermione! How's your summer going so far?", additional_kwargs={'sender': 'Harry Potter'}),
HumanMessage(content="Harry! Lovely to hear from you. My summer is going well, though I do miss everyone. I'm spending most of my time going through my books and researching fascinating new topics. How about you?", additional_kwargs={'sender': 'Hermione Granger'}),
HumanMessage(content="I miss you all too. The Dursleys are being their usual unpleasant selves but I'm getting by. At least I can practice some spells in my room without them knowing. Let me know if you find anything good in your researching!", additional_kwargs={'sender': 'Harry Potter'})]
loader = FolderFacebookMessengerChatLoader(
path="./hogwarts",
)
chat_sessions = loader.load()
len(chat_sessions)
9

3. 准备微调

调用load()返回所有我们可以提取为人类消息的聊天消息。在与聊天机器人对话时,对话通常遵循比真实对话更严格的交替对话模式。

您可以选择合并消息“运行”(来自同一发送者的连续消息)并选择一个发送者来代表“AI”。经过微调的LLM将学会生成这些AI消息。

from langchain_community.chat_loaders.utils import (
map_ai_messages,
merge_chat_runs,
)
merged_sessions = merge_chat_runs(chat_sessions)
alternating_sessions = list(map_ai_messages(merged_sessions, "Harry Potter"))
# Now all of Harry Potter's messages will take the AI message class
# which maps to the 'assistant' role in OpenAI's training format
alternating_sessions[0]["messages"][:3]
[AIMessage(content="Professor Snape, I was hoping I could speak with you for a moment about something that's been concerning me lately.", additional_kwargs={'sender': 'Harry Potter'}),
HumanMessage(content="What is it, Potter? I'm quite busy at the moment.", additional_kwargs={'sender': 'Severus Snape'}),
AIMessage(content="I apologize for the interruption, sir. I'll be brief. I've noticed some strange activity around the school grounds at night. I saw a cloaked figure lurking near the Forbidden Forest last night. I'm worried someone may be plotting something sinister.", additional_kwargs={'sender': 'Harry Potter'})]

现在我们可以转换为OpenAI格式的字典

from langchain_community.adapters.openai import convert_messages_for_finetuning
training_data = convert_messages_for_finetuning(alternating_sessions)
print(f"Prepared {len(training_data)} dialogues for training")
Prepared 9 dialogues for training
training_data[0][:3]
[{'role': 'assistant',
'content': "Professor Snape, I was hoping I could speak with you for a moment about something that's been concerning me lately."},
{'role': 'user',
'content': "What is it, Potter? I'm quite busy at the moment."},
{'role': 'assistant',
'content': "I apologize for the interruption, sir. I'll be brief. I've noticed some strange activity around the school grounds at night. I saw a cloaked figure lurking near the Forbidden Forest last night. I'm worried someone may be plotting something sinister."}]

OpenAI 目前要求至少需要 10 个训练示例来进行微调任务,尽管他们建议大多数任务需要 50-100 个。由于我们只有 9 个聊天会话,我们可以将它们细分(可以选择有一些重叠),以便每个训练示例由整个对话的一部分组成。

Facebook聊天会话(每人1个)通常跨越多天和多次对话,因此长距离依赖关系可能对建模并不那么重要。

# Our chat is alternating, we will make each datapoint a group of 8 messages,
# with 2 messages overlapping
chunk_size = 8
overlap = 2

training_examples = [
conversation_messages[i : i + chunk_size]
for conversation_messages in training_data
for i in range(0, len(conversation_messages) - chunk_size + 1, chunk_size - overlap)
]

len(training_examples)
100

4. 微调模型

是时候微调模型了。确保你已经安装了openai并正确设置了OPENAI_API_KEY

%pip install --upgrade --quiet  langchain-openai
import json
import time
from io import BytesIO

import openai

# We will write the jsonl file in memory
my_file = BytesIO()
for m in training_examples:
my_file.write((json.dumps({"messages": m}) + "\n").encode("utf-8"))

my_file.seek(0)
training_file = openai.files.create(file=my_file, purpose="fine-tune")

# OpenAI audits each training file for compliance reasons.
# This make take a few minutes
status = openai.files.retrieve(training_file.id).status
start_time = time.time()
while status != "processed":
print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
time.sleep(5)
status = openai.files.retrieve(training_file.id).status
print(f"File {training_file.id} ready after {time.time() - start_time:.2f} seconds.")
File file-ULumAXLEFw3vB6bb9uy6DNVC ready after 0.00 seconds.

文件准备就绪后,是时候启动训练任务了。

job = openai.fine_tuning.jobs.create(
training_file=training_file.id,
model="gpt-3.5-turbo",
)

在准备模型时,请喝杯茶。这可能需要一些时间!

status = openai.fine_tuning.jobs.retrieve(job.id).status
start_time = time.time()
while status != "succeeded":
print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
time.sleep(5)
job = openai.fine_tuning.jobs.retrieve(job.id)
status = job.status
Status=[running]... 874.29s. 56.93s
print(job.fine_tuned_model)
ft:gpt-3.5-turbo-0613:personal::8QnAzWMr

5. 在LangChain中使用

你可以直接使用生成的模型ID在ChatOpenAI模型类中。

from langchain_openai import ChatOpenAI

model = ChatOpenAI(
model=job.fine_tuned_model,
temperature=1,
)
API Reference:ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
[
("human", "{input}"),
]
)

chain = prompt | model | StrOutputParser()
for tok in chain.stream({"input": "What classes are you taking?"}):
print(tok, end="", flush=True)
I'm taking Charms, Defense Against the Dark Arts, Herbology, Potions, Transfiguration, and Ancient Runes. How about you?

这个页面有帮助吗?