iMessage
本笔记本展示了如何使用iMessage聊天加载器。该类帮助将iMessage对话转换为LangChain聊天消息。
在MacOS上,iMessage将对话存储在位于~/Library/Messages/chat.db
的sqlite数据库中(至少对于macOS Ventura 13.4而言)。
IMessageChatLoader
从这个数据库文件中加载数据。
- 创建
IMessageChatLoader
,并指向你想要处理的chat.db
数据库文件路径。 - 调用
loader.load()
(或loader.lazy_load()
)来执行转换。可选择使用merge_chat_runs
来合并来自同一发送者的连续消息,和/或使用map_ai_messages
将来自指定发送者的消息转换为 "AIMessage" 类。
1. 访问聊天数据库
很可能您的终端被拒绝访问~/Library/Messages
。要使用此类,您可以将数据库复制到可访问的目录(例如,文档)并从那里加载。或者(不推荐),您可以在系统设置 > 安全性与隐私 > 完全磁盘访问中为您的终端模拟器授予完全磁盘访问权限。
我们创建了一个示例数据库,您可以在此链接的驱动文件中使用。
# This uses some example data
import requests
def download_drive_file(url: str, output_path: str = "chat.db") -> None:
file_id = url.split("/")[-2]
download_url = f"https://drive.google.com/uc?export=download&id={file_id}"
response = requests.get(download_url)
if response.status_code != 200:
print("Failed to download the file.")
return
with open(output_path, "wb") as file:
file.write(response.content)
print(f"File {output_path} downloaded.")
url = (
"https://drive.google.com/file/d/1NebNKqTA2NXApCmeH6mu0unJD2tANZzo/view?usp=sharing"
)
# Download file to chat.db
download_drive_file(url)
File chat.db downloaded.
2. 创建聊天加载器
为加载器提供zip目录的文件路径。您还可以选择指定映射到AI消息的用户ID,并配置是否合并消息运行。
from langchain_community.chat_loaders.imessage import IMessageChatLoader
API Reference:IMessageChatLoader
loader = IMessageChatLoader(
path="./chat.db",
)
3. 加载消息
load()
(或lazy_load
)方法返回一个“ChatSessions”列表,目前仅包含每个加载对话的消息列表。所有消息最初都映射为“HumanMessage”对象。
您可以选择性地选择合并消息“运行”(来自同一发送者的连续消息)并选择一个发送者来代表“AI”。经过微调的LLM将学会生成这些AI消息。
from typing import List
from langchain_community.chat_loaders.utils import (
map_ai_messages,
merge_chat_runs,
)
from langchain_core.chat_sessions import ChatSession
raw_messages = loader.lazy_load()
# Merge consecutive messages from the same sender into a single message
merged_messages = merge_chat_runs(raw_messages)
# Convert messages from "Tortoise" to AI messages. Do you have a guess who these conversations are between?
chat_sessions: List[ChatSession] = list(
map_ai_messages(merged_messages, sender="Tortoise")
)
# Now all of the Tortoise's messages will take the AI message class
# which maps to the 'assistant' role in OpenAI's training format
chat_sessions[0]["messages"][:3]
[AIMessage(content="Slow and steady, that's my motto.", additional_kwargs={'message_time': 1693182723, 'sender': 'Tortoise'}, example=False),
HumanMessage(content='Speed is key!', additional_kwargs={'message_time': 1693182753, 'sender': 'Hare'}, example=False),
AIMessage(content='A balanced approach is more reliable.', additional_kwargs={'message_time': 1693182783, 'sender': 'Tortoise'}, example=False)]
3. 准备微调
现在是时候将我们的聊天消息转换为OpenAI字典了。我们可以使用convert_messages_for_finetuning
工具来完成这个任务。
from langchain_community.adapters.openai import convert_messages_for_finetuning
API Reference:convert_messages_for_finetuning
training_data = convert_messages_for_finetuning(chat_sessions)
print(f"Prepared {len(training_data)} dialogues for training")
Prepared 10 dialogues for training
4. 微调模型
是时候微调模型了。确保你已经安装了openai
并正确设置了OPENAI_API_KEY
%pip install --upgrade --quiet langchain-openai
import json
import time
from io import BytesIO
import openai
# We will write the jsonl file in memory
my_file = BytesIO()
for m in training_data:
my_file.write((json.dumps({"messages": m}) + "\n").encode("utf-8"))
my_file.seek(0)
training_file = openai.files.create(file=my_file, purpose="fine-tune")
# OpenAI audits each training file for compliance reasons.
# This make take a few minutes
status = openai.files.retrieve(training_file.id).status
start_time = time.time()
while status != "processed":
print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
time.sleep(5)
status = openai.files.retrieve(training_file.id).status
print(f"File {training_file.id} ready after {time.time() - start_time:.2f} seconds.")
File file-zHIgf4r8LltZG3RFpkGd4Sjf ready after 10.19 seconds.
文件准备就绪后,是时候启动训练任务了。
job = openai.fine_tuning.jobs.create(
training_file=training_file.id,
model="gpt-3.5-turbo",
)
在准备模型时,请喝杯茶。这可能需要一些时间!
status = openai.fine_tuning.jobs.retrieve(job.id).status
start_time = time.time()
while status != "succeeded":
print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
time.sleep(5)
job = openai.fine_tuning.jobs.retrieve(job.id)
status = job.status
Status=[running]... 524.95s
print(job.fine_tuned_model)
ft:gpt-3.5-turbo-0613:personal::7sKoRdlz
5. 在LangChain中使用
你可以直接使用生成的模型ID在ChatOpenAI
模型类中。
from langchain_openai import ChatOpenAI
model = ChatOpenAI(
model=job.fine_tuned_model,
temperature=1,
)
API Reference:ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are speaking to hare."),
("human", "{input}"),
]
)
chain = prompt | model | StrOutputParser()
API Reference:StrOutputParser | ChatPromptTemplate
for tok in chain.stream({"input": "What's the golden thread?"}):
print(tok, end="", flush=True)
A symbol of interconnectedness.