Skip to main content
Open In ColabOpen on GitHub

OCI 数据科学模型部署端点

OCI Data Science 是一个完全托管且无服务器的平台,供数据科学团队在Oracle云基础设施中构建、训练和管理机器学习模型。

有关最新更新、示例和实验性功能,请参阅 ADS LangChain Integration

本笔记本介绍了如何使用托管在OCI数据科学模型部署上的LLM。

为了进行身份验证,使用oracle-ads库来自动加载调用端点所需的凭据。

!pip3 install oracle-ads

先决条件

部署模型

您可以使用OCI数据科学模型部署上的AI快速操作轻松部署、微调和评估基础模型。如需更多部署示例,请访问Oracle GitHub示例库

策略

确保拥有访问OCI数据科学模型部署端点所需的策略

设置

部署模型后,您需要设置以下必需的调用参数:

  • endpoint: 部署模型的HTTP端点,例如 https://modeldeployment..oci.customer-oci.com//predict

认证

您可以通过广告或环境变量设置认证。当您在OCI数据科学笔记本会话中工作时,您可以利用资源主体访问其他OCI资源。查看这里以查看更多选项。

示例

import ads
from langchain_community.llms import OCIModelDeploymentLLM

# Set authentication through ads
# Use resource principal are operating within a
# OCI service that has resource principal based
# authentication configured
ads.set_auth("resource_principal")

# Create an instance of OCI Model Deployment Endpoint
# Replace the endpoint uri and model name with your own
# Using generic class as entry point, you will be able
# to pass model parameters through model_kwargs during
# instantiation.
llm = OCIModelDeploymentLLM(
endpoint="https://modeldeployment.<region>.oci.customer-oci.com/<md_ocid>/predict",
model="odsc-llm",
)

# Run the LLM
llm.invoke("Who is the first president of United States?")
API Reference:OCIModelDeploymentLLM
import ads
from langchain_community.llms import OCIModelDeploymentVLLM

# Set authentication through ads
# Use resource principal are operating within a
# OCI service that has resource principal based
# authentication configured
ads.set_auth("resource_principal")

# Create an instance of OCI Model Deployment Endpoint
# Replace the endpoint uri and model name with your own
# Using framework specific class as entry point, you will
# be able to pass model parameters in constructor.
llm = OCIModelDeploymentVLLM(
endpoint="https://modeldeployment.<region>.oci.customer-oci.com/<md_ocid>/predict",
)

# Run the LLM
llm.invoke("Who is the first president of United States?")
import os

from langchain_community.llms import OCIModelDeploymentTGI

# Set authentication through environment variables
# Use API Key setup when you are working from a local
# workstation or on platform which does not support
# resource principals.
os.environ["OCI_IAM_TYPE"] = "api_key"
os.environ["OCI_CONFIG_PROFILE"] = "default"
os.environ["OCI_CONFIG_LOCATION"] = "~/.oci"

# Set endpoint through environment variables
# Replace the endpoint uri with your own
os.environ["OCI_LLM_ENDPOINT"] = (
"https://modeldeployment.<region>.oci.customer-oci.com/<md_ocid>/predict"
)

# Create an instance of OCI Model Deployment Endpoint
# Using framework specific class as entry point, you will
# be able to pass model parameters in constructor.
llm = OCIModelDeploymentTGI()

# Run the LLM
llm.invoke("Who is the first president of United States?")
API Reference:OCIModelDeploymentTGI

异步调用

await llm.ainvoke("Tell me a joke.")

流式调用

for chunk in llm.stream("Tell me a joke."):
print(chunk, end="", flush=True)

API 参考

有关所有功能和配置的全面详细信息,请参阅每个类的API参考文档:


这个页面有帮助吗?