Ibis 是一个支持20多种后端的Python数据框库,默认使用DuckDB。Ibis与DuckDB结合提供了一个高性能的SQL Python接口。
Installation
你可以使用DuckDB后端通过pip安装Ibis:
pip install 'ibis-framework[duckdb,examples]' # examples is only required to access the sample data Ibis provides
或使用 conda:
conda install ibis-framework
或使用 mamba:
mamba install ibis-framework
创建数据库文件
Ibis 可以处理多种文件类型,但其核心是连接到现有数据库并与其中的数据进行交互。您可以从自己的 DuckDB 数据库开始,或者使用示例数据创建一个新的数据库。
import ibis
con = ibis.connect("duckdb://penguins.ddb")
con.create_table(
"penguins", ibis.examples.penguins.fetch().to_pyarrow(), overwrite = True
)
# Output:
DatabaseTable: penguins
species string
island string
bill_length_mm float64
bill_depth_mm float64
flipper_length_mm int64
body_mass_g int64
sex string
year int64
您现在可以看到示例数据集已复制到数据库中:
# reconnect to the persisted database (dropping temp tables)
con = ibis.connect("duckdb://penguins.ddb")
con.list_tables()
# Output:
['penguins']
有一个表,叫做penguins
。我们可以让Ibis给我们一个可以交互的对象。
penguins = con.table("penguins")
penguins
# Output:
DatabaseTable: penguins
species string
island string
bill_length_mm float64
bill_depth_mm float64
flipper_length_mm int64
body_mass_g int64
sex string
year int64
Ibis 是惰性求值的,因此我们看不到数据,而是看到表的模式。要查看数据,我们可以调用 head
,然后调用 to_pandas
来获取表的前几行作为 pandas DataFrame。
penguins.head().to_pandas()
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex year
0 Adelie Torgersen 39.1 18.7 181.0 3750.0 male 2007
1 Adelie Torgersen 39.5 17.4 186.0 3800.0 female 2007
2 Adelie Torgersen 40.3 18.0 195.0 3250.0 female 2007
3 Adelie Torgersen NaN NaN NaN NaN None 2007
4 Adelie Torgersen 36.7 19.3 193.0 3450.0 female 2007
to_pandas
接受现有的惰性表表达式并对其进行评估。如果我们省略它,你将看到 to_pandas
将要评估的表表达式的 Ibis 表示(当你准备好时!)。
penguins.head()
# Output:
r0 := DatabaseTable: penguins
species string
island string
bill_length_mm float64
bill_depth_mm float64
flipper_length_mm int64
body_mass_g int64
sex string
year int64
Limit[r0, n=5]
Ibis 使用 to_pandas
将结果返回为 pandas DataFrame,但并不使用 pandas 来执行任何计算。查询由 DuckDB 执行。只有在调用 to_pandas
时,Ibis 才会拉回结果并将其转换为 DataFrame。
交互模式
在本介绍的其余部分,我们将开启交互模式,该模式会部分执行查询,为用户提供结果的预览。输出格式有一些小的差异,但除此之外,这与在表表达式上调用to_pandas
并返回10行结果行是相同的。
ibis.options.interactive = True
penguins.head()
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃
┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩
│ string │ string │ float64 │ float64 │ int64 │ int64 │ string │ int64 │
├─────────┼───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤
│ Adelie │ Torgersen │ 39.1 │ 18.7 │ 181 │ 3750 │ male │ 2007 │
│ Adelie │ Torgersen │ 39.5 │ 17.4 │ 186 │ 3800 │ female │ 2007 │
│ Adelie │ Torgersen │ 40.3 │ 18.0 │ 195 │ 3250 │ female │ 2007 │
│ Adelie │ Torgersen │ nan │ nan │ NULL │ NULL │ NULL │ 2007 │
│ Adelie │ Torgersen │ 36.7 │ 19.3 │ 193 │ 3450 │ female │ 2007 │
└─────────┴───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
常见操作
Ibis 提供了一系列有用的表方法,用于操作和查询表中的数据。
filter
filter
允许你根据一个条件或一组条件选择行。
我们可以进行过滤,以便只保留阿德利企鹅这一物种:
penguins.filter(penguins.species == "Gentoo")
┏━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃
┡━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩
│ string │ string │ float64 │ float64 │ int64 │ int64 │ string │ int64 │
├─────────┼────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤
│ Gentoo │ Biscoe │ 46.1 │ 13.2 │ 211 │ 4500 │ female │ 2007 │
│ Gentoo │ Biscoe │ 50.0 │ 16.3 │ 230 │ 5700 │ male │ 2007 │
│ Gentoo │ Biscoe │ 48.7 │ 14.1 │ 210 │ 4450 │ female │ 2007 │
│ Gentoo │ Biscoe │ 50.0 │ 15.2 │ 218 │ 5700 │ male │ 2007 │
│ Gentoo │ Biscoe │ 47.6 │ 14.5 │ 215 │ 5400 │ male │ 2007 │
│ Gentoo │ Biscoe │ 46.5 │ 13.5 │ 210 │ 4550 │ female │ 2007 │
│ Gentoo │ Biscoe │ 45.4 │ 14.6 │ 211 │ 4800 │ female │ 2007 │
│ Gentoo │ Biscoe │ 46.7 │ 15.3 │ 219 │ 5200 │ male │ 2007 │
│ Gentoo │ Biscoe │ 43.3 │ 13.4 │ 209 │ 4400 │ female │ 2007 │
│ Gentoo │ Biscoe │ 46.8 │ 15.4 │ 215 │ 5150 │ male │ 2007 │
│ … │ … │ … │ … │ … │ … │ … │ … │
└─────────┴────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
或者筛选出体重超过6公斤的Gentoo企鹅。
penguins.filter((penguins.species == "Gentoo") & (penguins.body_mass_g > 6000))
┏━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃
┡━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩
│ string │ string │ float64 │ float64 │ int64 │ int64 │ string │ int64 │
├─────────┼────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤
│ Gentoo │ Biscoe │ 49.2 │ 15.2 │ 221 │ 6300 │ male │ 2007 │
│ Gentoo │ Biscoe │ 59.6 │ 17.0 │ 230 │ 6050 │ male │ 2007 │
└─────────┴────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
你可以在过滤器中使用任何布尔比较(尽管如果你尝试在字符串上使用类似<
的操作,Ibis会对你发出警告)。
select
您的数据分析可能不需要给定表中的所有列。select
允许您仅选择您想要处理的那些列。
要选择一列,您可以使用列名作为字符串:
penguins.select("species", "island", "year").limit(3)
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━┓
┃ species ┃ island ┃ year ┃
┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━┩
│ string │ string │ int64 │
├─────────┼───────────┼───────┤
│ Adelie │ Torgersen │ 2007 │
│ Adelie │ Torgersen │ 2007 │
│ Adelie │ Torgersen │ 2007 │
│ … │ … │ … │
└─────────┴───────────┴───────┘
或者你可以直接使用列对象(这在与标签补全配对时可能很方便):
penguins.select(penguins.species, penguins.island, penguins.year).limit(3)
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━┓
┃ species ┃ island ┃ year ┃
┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━┩
│ string │ string │ int64 │
├─────────┼───────────┼───────┤
│ Adelie │ Torgersen │ 2007 │
│ Adelie │ Torgersen │ 2007 │
│ Adelie │ Torgersen │ 2007 │
│ … │ … │ … │
└─────────┴───────────┴───────┘
或者你可以混合搭配:
penguins.select("species", "island", penguins.year).limit(3)
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━┓
┃ species ┃ island ┃ year ┃
┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━┩
│ string │ string │ int64 │
├─────────┼───────────┼───────┤
│ Adelie │ Torgersen │ 2007 │
│ Adelie │ Torgersen │ 2007 │
│ Adelie │ Torgersen │ 2007 │
│ … │ … │ … │
└─────────┴───────────┴───────┘
mutate
mutate
允许你向表中添加新列,这些列的值是从现有列的值派生出来的。
penguins.mutate(bill_length_cm=penguins.bill_length_mm / 10)
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━━━━━┓
┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃ bill_length_cm ┃
┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━━━━━┩
│ string │ string │ float64 │ float64 │ int64 │ int64 │ string │ int64 │ float64 │
├─────────┼───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┼────────────────┤
│ Adelie │ Torgersen │ 39.1 │ 18.7 │ 181 │ 3750 │ male │ 2007 │ 3.91 │
│ Adelie │ Torgersen │ 39.5 │ 17.4 │ 186 │ 3800 │ female │ 2007 │ 3.95 │
│ Adelie │ Torgersen │ 40.3 │ 18.0 │ 195 │ 3250 │ female │ 2007 │ 4.03 │
│ Adelie │ Torgersen │ nan │ nan │ NULL │ NULL │ NULL │ 2007 │ nan │
│ Adelie │ Torgersen │ 36.7 │ 19.3 │ 193 │ 3450 │ female │ 2007 │ 3.67 │
│ Adelie │ Torgersen │ 39.3 │ 20.6 │ 190 │ 3650 │ male │ 2007 │ 3.93 │
│ Adelie │ Torgersen │ 38.9 │ 17.8 │ 181 │ 3625 │ female │ 2007 │ 3.89 │
│ Adelie │ Torgersen │ 39.2 │ 19.6 │ 195 │ 4675 │ male │ 2007 │ 3.92 │
│ Adelie │ Torgersen │ 34.1 │ 18.1 │ 193 │ 3475 │ NULL │ 2007 │ 3.41 │
│ Adelie │ Torgersen │ 42.0 │ 20.2 │ 190 │ 4250 │ NULL │ 2007 │ 4.20 │
│ … │ … │ … │ … │ … │ … │ … │ … │ … │
└─────────┴───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┴────────────────┘
请注意,表格现在有点太宽,无法显示所有列(取决于您的屏幕尺寸)。bill_length
现在以毫米和厘米为单位显示。使用select
来减少我们查看的列数。
penguins.mutate(bill_length_cm=penguins.bill_length_mm / 10).select(
"species",
"island",
"bill_depth_mm",
"flipper_length_mm",
"body_mass_g",
"sex",
"year",
"bill_length_cm",
)
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━━━━━┓
┃ species ┃ island ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃ bill_length_cm ┃
┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━━━━━┩
│ string │ string │ float64 │ int64 │ int64 │ string │ int64 │ float64 │
├─────────┼───────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┼────────────────┤
│ Adelie │ Torgersen │ 18.7 │ 181 │ 3750 │ male │ 2007 │ 3.91 │
│ Adelie │ Torgersen │ 17.4 │ 186 │ 3800 │ female │ 2007 │ 3.95 │
│ Adelie │ Torgersen │ 18.0 │ 195 │ 3250 │ female │ 2007 │ 4.03 │
│ Adelie │ Torgersen │ nan │ NULL │ NULL │ NULL │ 2007 │ nan │
│ Adelie │ Torgersen │ 19.3 │ 193 │ 3450 │ female │ 2007 │ 3.67 │
│ Adelie │ Torgersen │ 20.6 │ 190 │ 3650 │ male │ 2007 │ 3.93 │
│ Adelie │ Torgersen │ 17.8 │ 181 │ 3625 │ female │ 2007 │ 3.89 │
│ Adelie │ Torgersen │ 19.6 │ 195 │ 4675 │ male │ 2007 │ 3.92 │
│ Adelie │ Torgersen │ 18.1 │ 193 │ 3475 │ NULL │ 2007 │ 3.41 │
│ Adelie │ Torgersen │ 20.2 │ 190 │ 4250 │ NULL │ 2007 │ 4.20 │
│ … │ … │ … │ … │ … │ … │ … │ … │
└─────────┴───────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┴────────────────┘
selectors
输入所有列名除了一个有点烦人。为了避免再次这样做,我们可以使用selector
来快速选择或取消选择列组。
import ibis.selectors as s
penguins.mutate(bill_length_cm=penguins.bill_length_mm / 10).select(
~s.matches("bill_length_mm")
# match every column except `bill_length_mm`
)
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━━━━━┓
┃ species ┃ island ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃ bill_length_cm ┃
┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━━━━━┩
│ string │ string │ float64 │ int64 │ int64 │ string │ int64 │ float64 │
├─────────┼───────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┼────────────────┤
│ Adelie │ Torgersen │ 18.7 │ 181 │ 3750 │ male │ 2007 │ 3.91 │
│ Adelie │ Torgersen │ 17.4 │ 186 │ 3800 │ female │ 2007 │ 3.95 │
│ Adelie │ Torgersen │ 18.0 │ 195 │ 3250 │ female │ 2007 │ 4.03 │
│ Adelie │ Torgersen │ nan │ NULL │ NULL │ NULL │ 2007 │ nan │
│ Adelie │ Torgersen │ 19.3 │ 193 │ 3450 │ female │ 2007 │ 3.67 │
│ Adelie │ Torgersen │ 20.6 │ 190 │ 3650 │ male │ 2007 │ 3.93 │
│ Adelie │ Torgersen │ 17.8 │ 181 │ 3625 │ female │ 2007 │ 3.89 │
│ Adelie │ Torgersen │ 19.6 │ 195 │ 4675 │ male │ 2007 │ 3.92 │
│ Adelie │ Torgersen │ 18.1 │ 193 │ 3475 │ NULL │ 2007 │ 3.41 │
│ Adelie │ Torgersen │ 20.2 │ 190 │ 4250 │ NULL │ 2007 │ 4.20 │
│ … │ … │ … │ … │ … │ … │ … │ … │
└─────────┴───────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┴────────────────┘
你也可以在列名旁边使用一个selector
。
penguins.select("island", s.numeric())
┏━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━┓
┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ year ┃
┡━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━┩
│ string │ float64 │ float64 │ int64 │ int64 │ int64 │
├───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼───────┤
│ Torgersen │ 39.1 │ 18.7 │ 181 │ 3750 │ 2007 │
│ Torgersen │ 39.5 │ 17.4 │ 186 │ 3800 │ 2007 │
│ Torgersen │ 40.3 │ 18.0 │ 195 │ 3250 │ 2007 │
│ Torgersen │ nan │ nan │ NULL │ NULL │ 2007 │
│ Torgersen │ 36.7 │ 19.3 │ 193 │ 3450 │ 2007 │
│ Torgersen │ 39.3 │ 20.6 │ 190 │ 3650 │ 2007 │
│ Torgersen │ 38.9 │ 17.8 │ 181 │ 3625 │ 2007 │
│ Torgersen │ 39.2 │ 19.6 │ 195 │ 4675 │ 2007 │
│ Torgersen │ 34.1 │ 18.1 │ 193 │ 3475 │ 2007 │
│ Torgersen │ 42.0 │ 20.2 │ 190 │ 4250 │ 2007 │
│ … │ … │ … │ … │ … │ … │
└───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴───────┘
你可以在文档中阅读更多关于selectors
的内容!
order_by
order_by
将一个或多个列的值按升序或降序排列。
默认情况下,ibis
按升序排序:
penguins.order_by(penguins.flipper_length_mm).select(
"species", "island", "flipper_length_mm"
)
┏━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓
┃ species ┃ island ┃ flipper_length_mm ┃
┡━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩
│ string │ string │ int64 │
├───────────┼───────────┼───────────────────┤
│ Adelie │ Biscoe │ 172 │
│ Adelie │ Biscoe │ 174 │
│ Adelie │ Torgersen │ 176 │
│ Adelie │ Dream │ 178 │
│ Adelie │ Dream │ 178 │
│ Adelie │ Dream │ 178 │
│ Chinstrap │ Dream │ 178 │
│ Adelie │ Dream │ 179 │
│ Adelie │ Torgersen │ 180 │
│ Adelie │ Biscoe │ 180 │
│ … │ … │ … │
└───────────┴───────────┴───────────────────┘
你可以使用列的desc
方法进行降序排序:
penguins.order_by(penguins.flipper_length_mm.desc()).select(
"species", "island", "flipper_length_mm"
)
┏━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓
┃ species ┃ island ┃ flipper_length_mm ┃
┡━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩
│ string │ string │ int64 │
├─────────┼────────┼───────────────────┤
│ Gentoo │ Biscoe │ 231 │
│ Gentoo │ Biscoe │ 230 │
│ Gentoo │ Biscoe │ 230 │
│ Gentoo │ Biscoe │ 230 │
│ Gentoo │ Biscoe │ 230 │
│ Gentoo │ Biscoe │ 230 │
│ Gentoo │ Biscoe │ 230 │
│ Gentoo │ Biscoe │ 230 │
│ Gentoo │ Biscoe │ 229 │
│ Gentoo │ Biscoe │ 229 │
│ … │ … │ … │
└─────────┴────────┴───────────────────┘
或者你可以使用 ibis.desc
penguins.order_by(ibis.desc("flipper_length_mm")).select(
"species", "island", "flipper_length_mm"
)
┏━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓
┃ species ┃ island ┃ flipper_length_mm ┃
┡━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩
│ string │ string │ int64 │
├─────────┼────────┼───────────────────┤
│ Gentoo │ Biscoe │ 231 │
│ Gentoo │ Biscoe │ 230 │
│ Gentoo │ Biscoe │ 230 │
│ Gentoo │ Biscoe │ 230 │
│ Gentoo │ Biscoe │ 230 │
│ Gentoo │ Biscoe │ 230 │
│ Gentoo │ Biscoe │ 230 │
│ Gentoo │ Biscoe │ 230 │
│ Gentoo │ Biscoe │ 229 │
│ Gentoo │ Biscoe │ 229 │
│ … │ … │ … │
└─────────┴────────┴───────────────────┘
aggregate
Ibis 提供了多种聚合函数来帮助汇总数据。
mean
, max
, min
, count
, sum
(列表继续).
要对整个列进行聚合,请在该列上调用相应的方法。
penguins.flipper_length_mm.mean()
# Output:
200.91520467836258
你可以使用aggregate
方法一次性计算多个聚合:
penguins.aggregate([penguins.flipper_length_mm.mean(), penguins.bill_depth_mm.max()])
┏━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┓
┃ Mean(flipper_length_mm) ┃ Max(bill_depth_mm) ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━┩
│ float64 │ float64 │
├─────────────────────────┼────────────────────┤
│ 200.915205 │ 21.5 │
└─────────────────────────┴────────────────────┘
但是当aggregate
与group_by
配对时,它真的表现出色。
group_by
group_by
创建具有相同值的一列或多列的行分组。
但它本身并没有太多作用——你可以将其与aggregate
配对以获得结果。
penguins.group_by("species").aggregate()
┏━━━━━━━━━━━┓
┃ species ┃
┡━━━━━━━━━━━┩
│ string │
├───────────┤
│ Adelie │
│ Gentoo │
│ Chinstrap │
└───────────┘
我们按species
列进行分组,并对其执行了一个“空”的聚合命令。结果是species
列中的唯一值列。
如果我们在group_by
中添加第二列,我们将得到这些列中值的每个唯一配对。
penguins.group_by(["species", "island"]).aggregate()
┏━━━━━━━━━━━┳━━━━━━━━━━━┓
┃ species ┃ island ┃
┡━━━━━━━━━━━╇━━━━━━━━━━━┩
│ string │ string │
├───────────┼───────────┤
│ Adelie │ Torgersen │
│ Adelie │ Biscoe │
│ Adelie │ Dream │
│ Gentoo │ Biscoe │
│ Chinstrap │ Dream │
└───────────┴───────────┘
现在,如果我们添加一个聚合函数,我们开始真正打开局面。
penguins.group_by(["species", "island"]).aggregate(penguins.bill_length_mm.mean())
┏━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓
┃ species ┃ island ┃ Mean(bill_length_mm) ┃
┡━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━┩
│ string │ string │ float64 │
├───────────┼───────────┼──────────────────────┤
│ Adelie │ Torgersen │ 38.950980 │
│ Adelie │ Biscoe │ 38.975000 │
│ Adelie │ Dream │ 38.501786 │
│ Gentoo │ Biscoe │ 47.504878 │
│ Chinstrap │ Dream │ 48.833824 │
└───────────┴───────────┴──────────────────────┘
通过将mean
添加到aggregate
中,我们现在有一种简洁的方法来计算group_by
中每个不同组的聚合。我们可以根据需要计算尽可能多的聚合。
penguins.group_by(["species", "island"]).aggregate(
[penguins.bill_length_mm.mean(), penguins.flipper_length_mm.max()]
)
┏━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ species ┃ island ┃ Mean(bill_length_mm) ┃ Max(flipper_length_mm) ┃
┡━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━┩
│ string │ string │ float64 │ int64 │
├───────────┼───────────┼──────────────────────┼────────────────────────┤
│ Adelie │ Torgersen │ 38.950980 │ 210 │
│ Adelie │ Biscoe │ 38.975000 │ 203 │
│ Adelie │ Dream │ 38.501786 │ 208 │
│ Gentoo │ Biscoe │ 47.504878 │ 231 │
│ Chinstrap │ Dream │ 48.833824 │ 212 │
└───────────┴───────────┴──────────────────────┴────────────────────────┘
如果我们需要更具体的分组,我们可以添加到group_by
。
penguins.group_by(["species", "island", "sex"]).aggregate(
[penguins.bill_length_mm.mean(), penguins.flipper_length_mm.max()]
)
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ species ┃ island ┃ sex ┃ Mean(bill_length_mm) ┃ Max(flipper_length_mm) ┃
┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━┩
│ string │ string │ string │ float64 │ int64 │
├─────────┼───────────┼────────┼──────────────────────┼────────────────────────┤
│ Adelie │ Torgersen │ male │ 40.586957 │ 210 │
│ Adelie │ Torgersen │ female │ 37.554167 │ 196 │
│ Adelie │ Torgersen │ NULL │ 37.925000 │ 193 │
│ Adelie │ Biscoe │ female │ 37.359091 │ 199 │
│ Adelie │ Biscoe │ male │ 40.590909 │ 203 │
│ Adelie │ Dream │ female │ 36.911111 │ 202 │
│ Adelie │ Dream │ male │ 40.071429 │ 208 │
│ Adelie │ Dream │ NULL │ 37.500000 │ 179 │
│ Gentoo │ Biscoe │ female │ 45.563793 │ 222 │
│ Gentoo │ Biscoe │ male │ 49.473770 │ 231 │
│ … │ … │ … │ … │ … │
└─────────┴───────────┴────────┴──────────────────────┴────────────────────────┘
将所有内容串联起来
我们已经将一些Ibis调用链接在一起。我们使用了mutate
来创建一个新列,然后使用select
来仅查看新表的一个子集。我们刚刚将group_by
与aggregate
链接在一起。
没有什么能阻止我们将所有这些概念结合起来,向数据提出问题。
怎么样:
- 2008年每个岛上体重最大的雌性企鹅是什么?
penguins.filter((penguins.sex == "female") & (penguins.year == 2008)).group_by(
["island"]
).aggregate(penguins.body_mass_g.max())
┏━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┓
┃ island ┃ Max(body_mass_g) ┃
┡━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━┩
│ string │ int64 │
├───────────┼──────────────────┤
│ Biscoe │ 5200 │
│ Torgersen │ 3800 │
│ Dream │ 3900 │
└───────────┴──────────────────┘
- 每年数据收集中,每个岛上体重最大的雄性企鹅是什么情况?
penguins.filter(penguins.sex == "male").group_by(["island", "year"]).aggregate(
penguins.body_mass_g.max().name("max_body_mass")
).order_by(["year", "max_body_mass"])
┏━━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ island ┃ year ┃ max_body_mass ┃
┡━━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━━━━┩
│ string │ int64 │ int64 │
├───────────┼───────┼───────────────┤
│ Dream │ 2007 │ 4650 │
│ Torgersen │ 2007 │ 4675 │
│ Biscoe │ 2007 │ 6300 │
│ Torgersen │ 2008 │ 4700 │
│ Dream │ 2008 │ 4800 │
│ Biscoe │ 2008 │ 6000 │
│ Torgersen │ 2009 │ 4300 │
│ Dream │ 2009 │ 4475 │
│ Biscoe │ 2009 │ 6000 │
└───────────┴───────┴───────────────┘
Learn More
这就是本快速入门指南的全部内容。如果您想了解更多,请查看Ibis 文档。