InformationGainSegmentation#
- class InformationGainSegmentation(k_max: int = 10, step: int = 5)[源代码][源代码]#
基于信息增益的时间分割 (IGTS) 估计器。
IGTS 是一种无监督方法,通过定位信息增益最大化的变化点,将多元时间序列分割成不重叠的段。
信息增益 (IG) 定义为分割后熵的减少量。目标是找到对于指定数量的段落具有最大信息增益的分割。
IGTS 使用自上而下的搜索方法,贪婪地寻找下一个变化点位置,该位置能产生最大的信息增益。一旦找到这个位置,它会重复这个过程,直到找到时间序列的
k_max
个分割。备注
IGTS 对于单变量序列的效果不是很好,但如果原始的单变量序列通过增加额外的特征维度进行增强,它仍然可以使用。论文 [1] 中提出了一种技术,即从序列中减去其最大元素并将结果附加到序列中。
- 参数:
- k_max: int, default=10
要找到的变更点的最大数量。因此,段数为 k+1。
- 步骤:int, 默认值=5
步长,或用于选择变化点候选位置的步幅。例如,
step=5
将产生候选位置 [0, 5, 10, …]。与range
函数中的step
含义相同。
- 属性:
- change_points_: list of int
变化点的位置作为整数索引。按照惯例,变化点包括身份分割,即第一个和最后一个索引值 + 1。
- intermediate_results_: ``ChangePointResult`` 列表
每个k值的中间分割结果,其中k=1, 2, …, k_max
注释
基于 [1] 的工作。 - 替代的 Python 实现: cruiseresearchgroup/IGTS-python - MATLAB 版本: cruiseresearchgroup/IGTS-matlab - 论文可在此获取:
参考文献
[1] (1,2)Sadri, Amin, Yongli Ren, 和 Flora D. Salim. “基于信息增益的度量方法用于识别人类活动的转变。”, Pervasive and Mobile Computing, 38, 92-109, (2017). https://www.sciencedirect.com/science/article/abs/pii/S1574119217300081
示例
>>> from sktime.annotation.datagen import piecewise_normal_multivariate >>> from sklearn.preprocessing import MinMaxScaler >>> X = piecewise_normal_multivariate( ... lengths=[10, 10, 10, 10], ... means=[[0.0, 1.0], [11.0, 10.0], [5.0, 3.0], [2.0, 2.0]], ... variances=0.5, ... ) >>> X_scaled = MinMaxScaler(feature_range=(0, 1)).fit_transform(X) >>> from sktime.annotation.igts import InformationGainSegmentation >>> igts = InformationGainSegmentation(k_max=3, step=2) >>> y = igts.fit_predict(X_scaled)
方法
检查估计器是否已被拟合。
clone
()获取一个具有相同超参数的对象副本。
clone_tags
(estimator[, tag_names])从另一个估计器克隆标签作为动态覆盖。
create_test_instance
([parameter_set])如果可能,构造 Estimator 实例。
create_test_instances_and_names
([parameter_set])创建所有测试实例的列表及其名称的列表。
fit
(X[, y])与 sklearn 类型估计器接口兼容的拟合方法。
fit_predict
(X[, y])执行分段。
get_class_tag
(tag_name[, tag_value_default])获取类标签的值。
从类及其所有父类中获取类标签。
获取 self 的配置标志
get_fitted_params
([deep])获取拟合参数。
获取对象的参数默认值。
get_param_names
([sort])获取对象的参数名称。
get_params
([deep])返回初始化参数。
get_tag
(tag_name[, tag_value_default, ...])从估计器类获取标签值和动态标签覆盖。
get_tags
()从估计器类获取标签和动态标签覆盖。
get_test_params
([parameter_set])返回估计器的测试参数设置。
检查对象是否由其他 BaseObjects 组成。
load_from_path
(serial)从文件位置加载对象。
load_from_serial
(serial)从序列化的内存容器中加载对象。
predict
(X[, y])执行分段。
reset
()将对象重置为初始化后的干净状态。
save
([path, serialization_format])将序列化的自身保存到类字节对象或 (.zip) 文件中。
set_config
(**config_dict)将配置标志设置为给定值。
set_params
(**parameters)设置此对象的参数。
set_random_state
([random_state, deep, ...])设置 random_state 伪随机种子参数为 self。
set_tags
(**tag_dict)将动态标签设置为给定值。
to_classification
(change_points)将变化点位置转换为分类向量。
to_clusters
(change_points)将变化点位置转换为聚类向量。
- fit(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], y: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None)[源代码][源代码]#
与 sklearn 类型估计器接口兼容的拟合方法。
它设置估计器的内部状态并返回初始化的实例。
- 参数:
- X: array_like
2D
array_like
表示时间序列,其中第一个维度沿序列索引,值序列作为列。- y: array_like
用于与 sklearn-api 兼容的占位符,未使用,默认=None。
- predict(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], y: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None) _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] [源代码][源代码]#
执行分段。
- 参数:
- X: array_like
2D
array_like
表示时间序列,其中第一个维度沿序列索引,值序列作为列。- y: array_like
用于与 sklearn-api 兼容的占位符,未使用,默认=None。
- 返回:
- y_pred类似数组
与X的第一个维度大小相同的1D数组,预测的分段。数值表示每个数据点的不同分段标签。
- fit_predict(X: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], y: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None) _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] [源代码][源代码]#
执行分段。
一个与sklearn类似API的兼容性便利方法。
- 参数:
- X: array_like
2D
array_like
表示时间序列,其中第一个维度沿序列索引,值序列作为列。- y: array_like
用于与 sklearn-api 兼容的占位符,未使用,默认=None。
- 返回:
- y_pred类似数组
与X的第一个维度大小相同的1D数组,预测的分段。数值表示每个数据点的不同分段标签。
- get_params(deep: bool = True) dict [源代码][源代码]#
返回初始化参数。
- 参数:
- deep: bool
用于与 sklearn-api 兼容的虚拟参数,未使用。
- 返回:
- params: dict
包含估计器初始化参数的字典,键为参数名称,值为参数值。
- classmethod get_test_params(parameter_set='default')[源代码][源代码]#
返回估计器的测试参数设置。
- 参数:
- 参数集str, 默认值为”default”
要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回
"default"
集。
- 返回:
- 参数字典或字典列表
- clone()[源代码]#
获取一个具有相同超参数的对象副本。
克隆是一个在初始化后状态下的不同对象,没有共享引用。此函数等同于返回 self 的 sklearn.clone。
- 引发:
- 如果克隆不符合规范,由于
__init__
存在错误,将引发 RuntimeError。
- 如果克隆不符合规范,由于
注释
如果成功,值等于
type(self)(**self.get_params(deep=False))
。
- clone_tags(estimator, tag_names=None)[源代码]#
从另一个估计器克隆标签作为动态覆盖。
- 参数:
- 估计器继承自
BaseEstimator
的估计器 - 标签名称str 或 str 列表, 默认 = None
要克隆的标签名称。如果为 None,则使用估计器中的所有标签作为 tag_names。
- 估计器继承自
- 返回:
- 自我
自我引用。
注释
通过在 tag_set 中设置来自估计器的标签值,改变对象状态为动态标签于 self 中。
- classmethod create_test_instance(parameter_set='default')[源代码]#
如果可能,构造 Estimator 实例。
- 参数:
- 参数集str, 默认值为”default”
要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。
- 返回:
- 实例使用默认参数的类实例
注释
get_test_params 可以返回字典或字典列表。此函数采用 get_test_params 返回的第一个或单个字典,并用该字典构建对象。
- classmethod create_test_instances_and_names(parameter_set='default')[源代码]#
创建所有测试实例的列表及其名称的列表。
- 参数:
- 参数集str, 默认值为”default”
要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。
- 返回:
- objscls 的实例列表
第 i 个实例是 cls(**cls.get_test_params()[i])
- 名称list of str, 与 objs 长度相同
第 i 个元素是测试中第 i 个 obj 实例的名称,约定为 {cls.__name__}-{i},如果存在多个实例,否则为 {cls.__name__}
- classmethod get_class_tag(tag_name, tag_value_default=None)[源代码]#
获取类标签的值。
不返回在实例上定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。
- 参数:
- 标签名称str
标签值的名称。
- tag_value_default任何
如果未找到标签,则使用默认/回退值。
- 返回:
- 标签值
self 中 tag_name 标签的值。如果未找到,则返回 tag_value_default。
- classmethod get_class_tags()[源代码]#
从类及其所有父类中获取类标签。
从 _tags 类属性中检索标签:值对。不返回从实例中定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。
- 返回:
- collected_tagsdict
类标签名称字典:标签值对。通过嵌套继承从 _tags 类属性中收集。
- get_config()[源代码]#
获取 self 的配置标志
- 返回:
- config_dictdict
配置名称 : 配置值对的字典。从 _config 类属性通过嵌套继承收集,然后是 _config_dynamic 对象属性的任何覆盖和新标签。
- get_fitted_params(deep=True)[源代码]#
获取拟合参数。
- 状态要求:
需要状态为“已拟合”。
- 参数:
- 深度bool, 默认=True
是否返回组件的拟合参数。
如果为真,将返回此对象的参数名称 : 值的字典,包括可拟合组件的拟合参数(= BaseEstimator 值的参数)。
如果为 False,将返回一个包含参数名称和值的字典,但不会包含组件的拟合参数。
- 返回:
- fitted_params带有字符串键的字典
拟合参数的字典,paramname : paramvalue 键值对包括:
always: 此对象的所有拟合参数,通过
get_param_names
获取的值是该键对应的拟合参数值,属于此对象如果
deep=True
,还包含组件参数的键/值对,组件的参数被索引为[componentname]__[paramname]
,所有componentname
的参数都以其值的形式显示为paramname
。如果
deep=True
,还包含任意级别的组件递归,例如[componentname]__[componentcomponentname]__[paramname]
等。
- classmethod get_param_defaults()[源代码]#
获取对象的参数默认值。
- 返回:
- default_dict: dict[str, Any]
键是 cls 中所有在 __init__ 中定义了默认值的参数,值是 __init__ 中定义的默认值。
- classmethod get_param_names(sort=True)[源代码]#
获取对象的参数名称。
- 参数:
- 排序bool, 默认=True
是否按字母顺序返回参数名称(True),或者按它们在类
__init__
中出现的顺序返回(False)。
- 返回:
- param_names: list[str]
cls 的参数名称列表。如果
sort=False
,则按它们在类__init__
中出现的顺序排列。如果sort=True
,则按字母顺序排列。
- get_tag(tag_name, tag_value_default=None, raise_error=True)[源代码]#
从估计器类获取标签值和动态标签覆盖。
- 参数:
- 标签名称str
要检索的标签名称
- tag_value_default任何类型,可选;默认=None
如果未找到标签,则使用默认/回退值
- raise_error布尔
当未找到标签时是否引发 ValueError
- 返回:
- 标签值任何
self 中 tag_name 标签的值。如果未找到,如果 raise_error 为 True,则返回错误,否则返回 tag_value_default。
- 引发:
- 如果 raise_error 为 True,即如果 tag_name 不在其中,则引发 ValueError。
- self.get_tags().keys()
- get_tags()[源代码]#
从估计器类获取标签和动态标签覆盖。
- 返回:
- collected_tagsdict
标签名称 : 标签值对的字典。从 _tags 类属性通过嵌套继承收集,然后从 _tags_dynamic 对象属性中覆盖和新标签。
- is_composite()[源代码]#
检查对象是否由其他 BaseObjects 组成。
复合对象是一个包含对象的对象,作为参数。在实例上调用,因为这可能因实例而异。
- 返回:
- composite: bool
一个对象是否具有任何值为 BaseObjects 的参数。
- classmethod load_from_path(serial)[源代码]#
从文件位置加载对象。
- 参数:
- 串行ZipFile(path).open(“object”) 的结果
- 返回:
- 反序列化自身,结果输出到
path
,通过cls.save(path)
- 反序列化自身,结果输出到
- classmethod load_from_serial(serial)[源代码]#
从序列化的内存容器中加载对象。
- 参数:
- serial :
cls.save(None)
输出的第一个元素输出结果的第一个元素
- serial :
- 返回:
- 反序列化自身,结果输出为
serial
,来自cls.save(None)
- 反序列化自身,结果输出为
- reset()[源代码]#
将对象重置为初始化后的干净状态。
使用 reset,使用当前的超参数值(get_params 的结果)运行 __init__。这将移除任何对象属性,除了:
超参数 = __init__ 的参数
包含双下划线的对象属性,即字符串”__”
类和对象方法,以及类属性也不受影响。
- 返回:
- 自身
类的实例重置为干净的初始化后状态,但保留当前的超参数值。
注释
等同于 sklearn.clone 但覆盖了 self。在调用 self.reset() 之后,self 的值等于 type(self)(**self.get_params(deep=False))
- save(path=None, serialization_format='pickle')[源代码]#
将序列化的自身保存到类字节对象或 (.zip) 文件中。
行为:如果
path
为 None,则返回内存中的序列化自身;如果path
是一个文件位置,则将自身存储在该位置作为一个 zip 文件。保存的文件是包含以下内容的zip文件:_metadata - 包含自身的类,即 type(self) _obj - 序列化的自身。此类使用默认的序列化(pickle)。
- 参数:
- 路径无或文件位置(字符串或路径)
如果为 None,则将 self 保存到内存对象中;如果为文件位置,则将 self 保存到该文件位置。如果:
path=”estimator” 则会在当前工作目录下生成一个名为
estimator.zip
的压缩文件。path=”/home/stored/estimator” 则会在/home/stored/
目录下存储一个名为estimator.zip
的压缩文件。- serialization_format: str, default = “pickle”
用于序列化的模块。可用的选项是“pickle”和“cloudpickle”。请注意,非默认格式可能需要安装其他软依赖项。
- 返回:
- 如果
path
是 None - 内存中序列化的自身 - 如果
path
是文件位置 - 带有文件引用的 ZipFile
- 如果
- set_config(**config_dict)[源代码]#
将配置标志设置为给定值。
- 参数:
- config_dictdict
配置名称 : 配置值对的字典。有效的配置、值及其含义如下所示:
- 显示str, “diagram” (默认), 或 “text”
jupyter 内核如何显示 self 的实例
“diagram” = html 盒子图表示
“text” = 字符串打印输出
- print_changed_onlybool, 默认=True
是否仅打印与默认值不同的自我参数(False),或打印所有参数名称和值(False)。不嵌套,即仅影响自身,不影响组件估计器。
- 警告str, “on” (默认), 或 “off”
是否引发警告,仅影响来自 sktime 的警告
“on” = 将引发来自 sktime 的警告
“off” = 不会从 sktime 引发警告
- 后端:并行str, 可选, 默认=”None”
在广播/矢量化时用于并行化的后端,是以下之一
None
: 按顺序执行循环,简单的列表推导“loky”, “multiprocessing” 和 “threading”: 使用
joblib.Parallel
“joblib”:自定义和第三方
joblib
后端,例如spark
“dask”: 使用
dask
,需要在环境中安装dask
包
- backend:parallel:paramsdict, 可选, 默认={} (未传递参数)
传递给并行化后端的额外参数作为配置。有效键取决于
backend:parallel
的值:“None”: 没有额外参数,
backend_params
被忽略“loky”, “multiprocessing” 和 “threading”: 默认的
joblib
后端 任何有效的joblib.Parallel
键都可以在这里传递,例如n_jobs
,除了backend
直接由backend
控制。如果未传递n_jobs
,它将默认为-1
,其他参数将默认为joblib
的默认值。“joblib”: 自定义和第三方
joblib
后端,例如spark
。任何joblib.Parallel
的有效键都可以在这里传递,例如n_jobs
,在这种情况下,backend
必须作为backend_params
的键传递。如果未传递n_jobs
,它将默认为-1
,其他参数将默认为joblib
的默认值。“dask”: 任何
dask.compute
的有效键都可以传递,例如,scheduler
- 返回:
- self对自身的引用。
注释
更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。
- set_random_state(random_state=None, deep=True, self_policy='copy')[源代码]#
设置 random_state 伪随机种子参数为 self。
通过
estimator.get_params
查找名为random_state
的参数,并通过set_params
将它们设置为由random_state
派生的整数。这些整数通过sample_dependent_seed
的链式哈希采样获得,并保证种子随机生成器的伪随机独立性。根据
self_policy
应用于estimator
中的random_state
参数,并且仅当deep=True
时应用于剩余的组件估计器。注意:即使
self
没有random_state
,或者没有任何组件有random_state
参数,也会调用set_params
。因此,set_random_state
将重置任何scikit-base
估计器,即使它们没有random_state
参数。- 参数:
- random_stateint, RandomState 实例或 None, 默认=None
伪随机数生成器,用于控制随机整数的生成。传递整数以在多次函数调用中获得可重复的输出。
- 深度bool, 默认=True
是否在子估计器中设置随机状态。如果为 False,则仅在
self
的random_state
参数(如果存在)中设置。如果为 True,则还会在子估计器中设置random_state
参数。- self_policystr, 可以是 {“copy”, “keep”, “new”} 之一, 默认=”copy”
“复制”:
estimator.random_state
被设置为输入的random_state
“保持” :
estimator.random_state
保持不变“new” :
estimator.random_state
被设置为一个新的随机状态,
源自输入
random_state
,并且通常与其不同
- 返回:
- self自我引用
- set_tags(**tag_dict)[源代码]#
将动态标签设置为给定值。
- 参数:
- **标签字典dict
标签名称:标签值对的字典。
- 返回:
- 自我
自我引用。
注释
通过在 tag_dict 中设置标签值,将对象状态更改为 self 中的动态标签。
- to_classification(change_points: list[int]) _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] [源代码]#
将变化点位置转换为分类向量。
变化点检测结果可以被视为分类,其中真实变化点的位置用1标记在变化点的位置,其余非变化点的位置为0。
例如,对于长度为10的时间序列,改变点 [2, 8] 将导致:[0, 0, 1, 0, 0, 0, 0, 0, 1, 0]。
- to_clusters(change_points: list[int]) _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] [源代码]#
将变化点位置转换为聚类向量。
变化点检测结果可以被视为聚类,其中每个由变化点分隔的段被分配一个不同的虚拟标签。
例如,对于长度为10的时间序列,改变点 [2, 8] 将导致:[0, 0, 1, 1, 1, 1, 1, 1, 2, 2]。