ConformalIntervals#

class ConformalIntervals(forecaster, method='empirical', initial_window=None, sample_frac=None, verbose=False, n_jobs=None)[源代码][源代码]#

经验预测区间和一致性预测区间。

实现基于绝对残差的经验预测区间和保序预测区间。经验预测区间基于滑动窗口经验分位数。保序预测区间按照 [1] 中的描述实现。

所有区间都封装了一个任意的预测器,即,为给定的点预测预测器(第一个参数)添加概率预测能力。

method=”conformal_bonferroni” 是 [1] 中描述的方法。

其中使用了任意的预测器来代替RNN。

method=”conformal” 是 [1] 中的方法,但没有使用 Bonferroni 校正。

即,进行单独的预测,这导致 H=1(在所有时间范围内)。

method=”empirical” 使用训练集上相对符号残差的分位数,

即,在 [1] 的符号表示中,对于 i 的范围,y_t+h^(i) - y-hat_t+h^(i),在分位数 0.5-0.5*coverage(下限)和 0.5+0.5*coverage(上限)处,作为预测视野 h 处的点预测的偏移量

method=”empirical_residual” 使用绝对残差的经验分位数

在训练集上,即 epsilon-h 的分位数(在符号 [1] 中),在分位点 (1-coverage)/2 分位数处,作为点预测的偏移量

参数:
预测者估计器

正在添加概率预测的估计器

方法str, 可选, 默认值=”empirical”

empirical: 预测区间界限是训练数据的实证分位数 empirical_residual: 上下界限是加减 (1-覆盖率)/2 分位数

在水平线上的绝对残差,即,epsilon-h

conformal_bonferroni: Bonferroni,如 Stankeviciute 等人所述

注意:这并不提供频率主义者的预测区间,而是提供符合预测区间。

“conformal”: 如 Stankeviciute 等人所述,但 H=1,

即,在预测范围内没有根据索引数量进行Bonferroni校正

初始窗口float, int 或 None, 可选 (默认值=max(10, 0.1*len(y)))

定义初始训练窗口的大小。如果是浮点数,应在0.0到1.0之间,表示用于训练分割的初始窗口的数据集比例。如果是整数,表示初始窗口中训练样本的相对数量。如果为None,则该值设置为0.1*len(y)和10中的较大者。

sample_fracfloat, 可选, 默认=None

范围 (0,1) 内的值,对应于计算残差矩阵值的 y 索引分数(用于加快计算)

详细bool, 可选, 默认=False

是否在出现数据点过少的窗口时打印警告

n_jobsint 或 None, 可选, 默认=1

用于拟合的并行运行的作业数量。-1 表示使用所有处理器。

属性:
截止

Cut-off = 预测器的“当前时间”状态。

fh

传递的预测范围。

is_fitted

是否已调用 fit

参考文献

[1] (1,2,3,4,5)

Kamile Stankeviciute, Ahmed M Alaa 和 Mihaela van der Schaar。符合时间序列预测。NeurIPS 2021。

示例

>>> from sktime.datasets import load_airline  
>>> from sktime.forecasting.conformal import ConformalIntervals  
>>> from sktime.forecasting.naive import NaiveForecaster  
>>> y = load_airline()  
>>> forecaster = NaiveForecaster(strategy="drift")  
>>> conformal_forecaster = ConformalIntervals(forecaster)  
>>> conformal_forecaster.fit(y, fh=[1, 2, 3])  
ConformalIntervals(...)
>>> pred_int = conformal_forecaster.predict_interval()  

推荐使用 ConformalIntervals 与 ForecastingGridSearch 的方法是:1. 首先运行网格搜索,2. 然后在调整后的参数上使用 ConformalIntervals,否则,嵌套滑动窗口将导致高计算需求。

>>> from sktime.datasets import load_airline
>>> from sktime.forecasting.conformal import ConformalIntervals
>>> from sktime.forecasting.naive import NaiveForecaster
>>> from sktime.forecasting.model_selection import ForecastingGridSearchCV
>>> from sktime.split import ExpandingWindowSplitter
>>> from sktime.param_est.plugin import PluginParamsForecaster
>>> # part 1 = grid search
>>> cv = ExpandingWindowSplitter(fh=[1, 2, 3])  
>>> forecaster = NaiveForecaster()  
>>> param_grid = {"strategy" : ["last", "mean", "drift"]}  
>>> gscv = ForecastingGridSearchCV(
...     forecaster=forecaster,
...     param_grid=param_grid,
...     cv=cv,
... )  
>>> # part 2 = plug in results of grid search into conformal intervals estimator
>>> conformal_with_fallback = ConformalIntervals(NaiveForecaster())
>>> gscv_with_conformal = PluginParamsForecaster(
...     gscv,
...     conformal_with_fallback,
...     params={"forecaster": "best_forecaster"},
... )  
>>> y = load_airline()  
>>> gscv_with_conformal.fit(y, fh=[1, 2, 3])  
PluginParamsForecaster(...)
>>> y_pred_quantiles = gscv_with_conformal.predict_quantiles()  

方法

check_is_fitted()

检查估计器是否已被拟合。

clone()

获取一个具有相同超参数的对象副本。

clone_tags(estimator[, tag_names])

从另一个估计器克隆标签作为动态覆盖。

create_test_instance([parameter_set])

如果可能,构造 Estimator 实例。

create_test_instances_and_names([parameter_set])

创建所有测试实例的列表及其名称的列表。

fit(y[, X, fh])

将预测器拟合到训练数据。

fit_predict(y[, X, fh, X_pred])

在未来的时间范围内拟合和预测时间序列。

get_class_tag(tag_name[, tag_value_default])

获取一个类标签的值。

get_class_tags()

从类及其所有父类中获取类标签。

get_config()

获取 self 的配置标志

get_fitted_params([deep])

获取拟合参数。

get_param_defaults()

获取对象的参数默认值。

get_param_names([sort])

获取对象的参数名称。

get_params([deep])

获取此对象的参数值字典。

get_tag(tag_name[, tag_value_default, ...])

从估计器类获取标签值和动态标签覆盖。

get_tags()

从估计器类和动态标签覆盖中获取标签。

get_test_params([parameter_set])

返回估计器的测试参数设置。

is_composite()

检查对象是否由其他 BaseObjects 组成。

load_from_path(serial)

从文件位置加载对象。

load_from_serial(serial)

从序列化的内存容器中加载对象。

predict([fh, X])

预测未来时间范围内的时序数据。

predict_interval([fh, X, coverage])

计算/返回预测区间预测。

predict_proba([fh, X, marginal])

计算/返回完全概率预测。

predict_quantiles([fh, X, alpha])

计算/返回分位数预测。

predict_residuals([y, X])

返回时间序列预测的残差。

predict_var([fh, X, cov])

计算/返回方差预测。

reset()

将对象重置为初始化后的干净状态。

save([path, serialization_format])

将序列化的自身保存到类字节对象或 (.zip) 文件中。

score(y[, X, fh])

使用MAPE(非对称)对地面实况进行分数预测。

set_config(**config_dict)

将配置标志设置为给定值。

set_params(**params)

设置此对象的参数。

set_random_state([random_state, deep, ...])

为 self 设置 random_state 伪随机种子参数。

set_tags(**tag_dict)

将动态标签设置为给定值。

update(y[, X, update_params])

更新截止值,并可选地更新拟合参数。

update_predict(y[, cv, X, update_params, ...])

在测试集上迭代地进行预测并更新模型。

update_predict_single([y, fh, X, update_params])

使用新数据更新模型并进行预测。

classmethod get_test_params(parameter_set='default')[源代码][源代码]#

返回估计器的测试参数设置。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 "default" 集。

返回:
参数字典或字典列表
check_is_fitted()[源代码]#

检查估计器是否已被拟合。

Raises:
NotFittedError

如果估计器尚未拟合。

clone()[源代码]#

获取一个具有相同超参数的对象副本。

克隆是一个在初始化后状态下的不同对象,没有共享引用。此函数等同于返回 self 的 sklearn.clone。

Raises:
如果克隆不符合规范,由于 __init__ 存在错误,将引发 RuntimeError。

注释

如果成功,值等于 type(self)(**self.get_params(deep=False))

clone_tags(estimator, tag_names=None)[源代码]#

从另一个估计器克隆标签作为动态覆盖。

参数:
估计器继承自 BaseEstimator 的估计器
标签名称str 或 str 列表, 默认 = None

要克隆的标签名称。如果为 None,则使用估计器中的所有标签作为 tag_names

返回:
自我

自我引用。

注释

通过从估计器中设置tag_set中的标签值来更改对象状态,作为self中的动态标签。

classmethod create_test_instance(parameter_set='default')[源代码]#

如果可能,构造 Estimator 实例。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
实例使用默认参数的类实例

注释

get_test_params 可以返回字典或字典列表。此函数获取 get_test_params 返回的第一个或单个字典,并使用该字典构建对象。

classmethod create_test_instances_and_names(parameter_set='default')[源代码]#

创建所有测试实例的列表及其名称的列表。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
objscls 实例列表

第 i 个实例是 cls(**cls.get_test_params()[i])

名称list of str, 与 objs 长度相同

第 i 个元素是测试中第 i 个 obj 实例的名称,约定为 {cls.__name__}-{i} 如果存在多个实例,否则为 {cls.__name__}

property cutoff[源代码]#

Cut-off = 预测器的“当前时间”状态。

返回:
截止pandas 兼容的索引元素,或 None

pandas 兼容的索引元素,如果已设置截止点;否则为 None

property fh[源代码]#

传递的预测范围。

fit(y, X=None, fh=None)[源代码]#

将预测器拟合到训练数据。

状态变化:

将状态更改为“已拟合”。

写给自己:

  • 设置以“_”结尾的拟合模型属性,拟合属性可以通过 get_fitted_params 进行检查。

  • self.is_fitted 标志设置为 True

  • self.cutoff 设置为在 y 中看到的最后一个索引。

  • 如果传递了 fh,则将其存储到 self.fh

参数:
y : 以 sktime 兼容数据容器格式表示的时间序列。时间序列

要拟合预测器的时间序列。

sktime 中的单个数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype

  • Series 类型 = 单个时间序列,传统预测。pd.DataFramepd.Series``np.ndarray``(1D 或 2D)

  • Panel 类型 = 时间序列集合,全局/面板预测。pd.DataFrame 带有 2 级行 MultiIndex (实例, 时间)3D np.ndarray (实例, 变量, 时间)list 类型的 Series pd.DataFrame

  • Hierarchical 类型 = 分层集合,用于分层预测。pd.DataFrame 带有3个或更多级别的行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)

有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程 examples/01_forecasting.ipynb

fhint, list, np.array 或 ForecastingHorizon, 可选 (默认=None)

预测时间范围编码了要预测的时间戳。如果 self.get_tag("requires-fh-in-fit")True,则必须在 fit 中传递,不可选

X : sktime 兼容格式的时间序列,可选(默认=None)。时间序列

要拟合模型的外生时间序列。应与 y 具有相同的 scitype`(``Series`PanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index"),则 X.index 必须包含 y.index

返回:
self自我引用。
fit_predict(y, X=None, fh=None, X_pred=None)[源代码]#

在未来的时间范围内拟合和预测时间序列。

fit(y, X, fh).predict(X_pred) 相同。如果未传递 X_pred,则与 fit(y, fh, X).predict(X) 相同。

状态变化:

将状态更改为“已拟合”。

写给自己:

  • 设置以“_”结尾的拟合模型属性,拟合属性可以通过 get_fitted_params 进行检查。

  • self.is_fitted 标志设置为 True

  • self.cutoff 设置为在 y 中看到的最后一个索引。

  • fh 存储到 self.fh 中。

参数:
ysktime 兼容数据容器格式中的时间序列

要拟合预测器的时间序列。

sktime 中的单个数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype

  • Series 类型 = 单个时间序列,传统预测。pd.DataFramepd.Series``np.ndarray``(1D 或 2D)

  • Panel 类型 = 时间序列集合,全局/面板预测。pd.DataFrame 带有 2 级行 MultiIndex (实例, 时间)3D np.ndarray (实例, 变量, 时间)list 类型的 Series pd.DataFrame

  • Hierarchical 类型 = 分层集合,用于分层预测。pd.DataFrame 带有3个或更多级别的行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)

有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程 examples/01_forecasting.ipynb

fh : int, list, np.array 或 ForecastingHorizon (不可选)int, list, np.array 或

预测范围编码了要预测的时间戳。

X : sktime 兼容格式的时间序列,可选(默认=None)。时间序列

要拟合模型的外生时间序列。应与 y 具有相同的 scitype`(``Series`PanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index"),则 X.index 必须包含 y.index

X_predsktime 兼容格式的时间序列,可选(默认=None)

用于预测的外生时间序列。如果传递,将在预测中使用,而不是X。应与``fit``中的``y``具有相同的科学类型(SeriesPanel``或``Hierarchical)。如果``self.get_tag(“X-y-must-have-same-index”)``,``X.index``必须包含``fh``索引引用。

返回:
y_predsktime 兼容数据容器格式中的时间序列

fh 处的点预测,具有与 fh 相同的索引。y_pred 与最近传递的 y 具有相同类型:SeriesPanelHierarchical 科学类型,相同格式(见上文)

classmethod get_class_tag(tag_name, tag_value_default=None)[源代码]#

获取一个类标签的值。

不返回在实例上定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。

参数:
标签名称str

标签值的名称。

tag_value_default任何

如果未找到标签,则使用默认/回退值。

返回:
标签值

在 self 中 tag_name 标签的值。如果未找到,则返回 tag_value_default

classmethod get_class_tags()[源代码]#

从类及其所有父类中获取类标签。

从 _tags 类属性中检索标签:值对。不返回在实例上通过 set_tags 或 clone_tags 设置的动态标签信息。

返回:
collected_tagsdict

类标签名称字典:标签值对。通过嵌套继承从 _tags 类属性中收集。

get_config()[源代码]#

获取 self 的配置标志

返回:
config_dictdict

配置名称 : 配置值对的字典。从 _config 类属性通过嵌套继承收集,然后是 _config_dynamic 对象属性的任何覆盖和新标签。

get_fitted_params(deep=True)[源代码]#

获取拟合参数。

状态要求:

需要状态为“已拟合”。

参数:
深度bool, 默认=True

是否返回组件的拟合参数。

  • 如果为真,将返回此对象的参数名称 : 值的字典,包括可拟合组件的拟合参数(= BaseEstimator 值的参数)。

  • 如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的拟合参数。

返回:
fitted_params带有字符串键的字典

拟合参数的字典,paramname : paramvalue 键值对包括:

  • 总是:此对象的所有拟合参数,通过 get_param_names 获取的值是该键对应的拟合参数值,属于此对象。

  • 如果 deep=True,也包含组件参数的键/值对,组件的参数被索引为 [componentname]__[paramname],所有 componentname 的参数都以 paramname 的形式出现,并带有其值。

  • 如果 deep=True,还包含任意层级的组件递归,例如,[componentname]__[componentcomponentname]__[paramname],等等。

classmethod get_param_defaults()[源代码]#

获取对象的参数默认值。

返回:
default_dict: dict[str, Any]

键是 cls 中在 __init__ 中定义了默认值的所有参数,值是 __init__ 中定义的默认值。

classmethod get_param_names(sort=True)[源代码]#

获取对象的参数名称。

参数:
排序bool, 默认=True

是否按字母顺序返回参数名称(True),或者按它们在类 __init__ 中出现的顺序返回(False)。

返回:
param_names: list[str]

cls 的参数名称列表。如果 sort=False,则按其在类 __init__ 中出现的顺序排列。如果 sort=True,则按字母顺序排列。

get_params(deep=True)[源代码]#

获取此对象的参数值字典。

参数:
深度bool, 默认=True

是否返回组件的参数。

  • 如果为真,将返回此对象的参数名称 : 值的字典,包括组件的参数(= BaseObject 值的参数)。

  • 如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的参数。

返回:
参数带有字符串键的字典

参数字典,paramname : paramvalue 键值对包括:

  • 总是:此对象的所有参数,通过 get_param_names 获取的值是该键的参数值,此对象的值始终与构造时传递的值相同。

  • 如果 deep=True,还包含组件参数的键/值对,组件的参数被索引为 [componentname]__[paramname],所有 componentname 的参数都以 paramname 的形式出现,并带有其值。

  • 如果 deep=True,还包含任意级别的组件递归,例如,[componentname]__[componentcomponentname]__[paramname] 等。

get_tag(tag_name, tag_value_default=None, raise_error=True)[源代码]#

从估计器类获取标签值和动态标签覆盖。

参数:
标签名称str

要检索的标签名称

tag_value_default任意类型,可选;默认=None

如果未找到标签,则使用默认/回退值

raise_error布尔

当未找到标签时是否引发 ValueError

返回:
标签值任何

self 中 tag_name 标签的值。如果未找到,当 raise_error 为 True 时返回错误,否则返回 tag_value_default

Raises:
如果 raise_error 为 True,即如果 tag_name 不在其中,则引发 ValueError。
self.get_tags().keys()
get_tags()[源代码]#

从估计器类和动态标签覆盖中获取标签。

返回:
collected_tagsdict

标签名称 : 标签值对的字典。通过嵌套继承从 _tags 类属性中收集,然后从 _tags_dynamic 对象属性中覆盖和新标签。

is_composite()[源代码]#

检查对象是否由其他 BaseObjects 组成。

复合对象是一个包含对象的对象,作为参数。在实例上调用,因为这可能因实例而异。

返回:
composite: bool

一个对象是否有任何参数的值是 BaseObjects。

property is_fitted[源代码]#

是否已调用 fit

classmethod load_from_path(serial)[源代码]#

从文件位置加载对象。

参数:
串行ZipFile(path).open(“object”) 的结果
返回:
反序列化自身,结果输出到 path,通过 cls.save(path)
classmethod load_from_serial(serial)[源代码]#

从序列化的内存容器中加载对象。

参数:
serial : cls.save(None) 输出的第一个元素输出中的第一个元素
返回:
反序列化的自我导致输出 serial,来自 cls.save(None)
predict(fh=None, X=None)[源代码]#

预测未来时间范围内的时序数据。

状态要求:

需要状态为“已拟合”,即 self.is_fitted=True

在自身中的访问:

  • 以“_”结尾的拟合模型属性

  • self.cutoff, self.is_fitted

写给自己:

如果传入了 fh 且之前未传入,则将其存储到 self.fh 中。

参数:
fh : int, list, np.array 或 ForecastingHorizon,可选 (默认=None)int, list, np.array 或

预测范围编码了要预测的时间戳。如果已经在 fit 中传递,则不应传递。如果在 fit 中未传递,则必须传递,不可选。

X : sktime 兼容格式的时间序列,可选(默认=None)时间序列

用于预测的外生时间序列。应与``fit``中的``y``具有相同的科学类型(SeriesPanel``或``Hierarchical)。如果``self.get_tag(“X-y-must-have-same-index”)``,则``X.index``必须包含``fh``索引引用。

返回:
y_predsktime 兼容数据容器格式中的时间序列

fh 处的点预测,具有与 fh 相同的索引。y_pred 与最近传递的 y 具有相同类型:SeriesPanelHierarchical 科学类型,相同格式(见上文)

predict_interval(fh=None, X=None, coverage=0.9)[源代码]#

计算/返回预测区间预测。

如果 coverage 是可迭代的,将计算多个区间。

状态要求:

需要状态为“已拟合”,即 self.is_fitted=True

在自身中的访问:

  • 以“_”结尾的拟合模型属性

  • self.cutoff, self.is_fitted

写给自己:

如果传入了 fh 且之前未传入,则将其存储到 self.fh 中。

参数:
fh : int, list, np.array 或 ForecastingHorizon,可选 (默认=None)int, list, np.array 或

预测范围编码了要预测的时间戳。如果已经在 fit 中传递,则不应传递。如果在 fit 中未传递,则必须传递,不可选。

X : sktime 兼容格式的时间序列,可选(默认=None)时间序列

用于预测的外生时间序列。应与``fit``中的``y``具有相同的科学类型(SeriesPanel``或``Hierarchical)。如果``self.get_tag(“X-y-must-have-same-index”)``,则``X.index``必须包含``fh``索引引用。

覆盖率浮点数或唯一值的浮点数列表,可选(默认=0.90)

预测区间的标称覆盖率

返回:
pred_intpd.DataFrame
列具有多重索引:第一级是来自拟合中 y 的变量名称,
计算区间所对应的二级覆盖率分数。

按照输入 coverage 中的相同顺序。

第三级是字符串 “lower” 或 “upper”,用于下限/上限区间。

行索引是 fh,附加(上层)级别等于实例级别,

从 y 中可以看出,如果 y 在拟合中是面板或分层的。

条目是下限/上限区间端的预测,

对于列索引中的变量,在第二列索引的名义覆盖范围内,根据第三列索引的上下限,对于行索引。上下区间端点预测等价于在覆盖范围内的alpha = 0.5 - c/2, 0.5 + c/2的分位数预测。

predict_proba(fh=None, X=None, marginal=True)[源代码]#

计算/返回完全概率预测。

注意:目前仅针对 Series(非面板,非层次结构)y 实现。

状态要求:

需要状态为“已拟合”,即 self.is_fitted=True

在自身中的访问:

  • 以“_”结尾的拟合模型属性

  • self.cutoff, self.is_fitted

写给自己:

如果传入了 fh 且之前未传入,则将其存储到 self.fh 中。

参数:
fh : int, list, np.array 或 ForecastingHorizon,可选 (默认=None)int, list, np.array 或

预测范围编码了要预测的时间戳。如果已经在 fit 中传递,则不应传递。如果在 fit 中未传递,则必须传递,不可选。

X : sktime 兼容格式的时间序列,可选(默认=None)时间序列

用于预测的外生时间序列。应与``fit``中的``y``具有相同的科学类型(SeriesPanel``或``Hierarchical)。如果``self.get_tag(“X-y-must-have-same-index”)``,则``X.index``必须包含``fh``索引引用。

边缘的bool, 可选 (默认=True)

返回的分布是否按时间索引为边际分布

返回:
pred_distsktime 基础分布

如果 marginal=True,则为预测分布;如果 marginal=False 并通过方法实现,则为按时间点的边际分布;如果 marginal=False 并通过方法实现,则为联合分布。

predict_quantiles(fh=None, X=None, alpha=None)[源代码]#

计算/返回分位数预测。

如果 alpha 是可迭代的,将计算多个分位数。

状态要求:

需要状态为“已拟合”,即 self.is_fitted=True

在自身中的访问:

  • 以“_”结尾的拟合模型属性

  • self.cutoff, self.is_fitted

写给自己:

如果传入了 fh 且之前未传入,则将其存储到 self.fh 中。

参数:
fh : int, list, np.array 或 ForecastingHorizon,可选 (默认=None)int, list, np.array 或

预测范围编码了要预测的时间戳。如果已经在 fit 中传递,则不应传递。如果在 fit 中未传递,则必须传递,不可选。

X : sktime 兼容格式的时间序列,可选(默认=None)时间序列

用于预测的外生时间序列。应与``fit``中的``y``具有相同的科学类型(SeriesPanel``或``Hierarchical)。如果``self.get_tag(“X-y-must-have-same-index”)``,则``X.index``必须包含``fh``索引引用。

alpha浮点数或唯一值的浮点数列表,可选(默认值=[0.05, 0.95])

概率或概率列表,用于计算分位数预测。

返回:
分位数pd.DataFrame
列具有多重索引:第一级是来自拟合中 y 的变量名称,

第二级是传递给函数的 alpha 值。

行索引是 fh,附加(上层)级别等于实例级别,

从 y 中可以看出,如果 y 在拟合中是面板或分层的。

条目是分位数预测,针对列索引中的变量。

在第二列索引的分位数概率中,对应于行索引。

predict_residuals(y=None, X=None)[源代码]#

返回时间序列预测的残差。

将在 y.index 处为预测计算残差。

如果必须在拟合中传递 fh,则必须与 y.index 一致。如果 y 是 np.ndarray,并且在拟合中没有传递 fh,则将在 fh 为 range(len(y.shape[0])) 时计算残差。

状态要求:

需要状态为“已拟合”。如果设置了 fh,则必须对应于 y 的索引(pandas 或整数)

在自身中的访问:

以“_”结尾的拟合模型属性。self.cutoff, self._is_fitted

写给自己:

无。

参数:
ysktime 兼容数据容器格式中的时间序列

带有地面真值观测的时间序列,用于计算残差。必须与预测返回的类型、维度及索引相同。

如果为 None,则使用目前为止看到的 y(self._y),特别是:

  • 如果前面调用了一次 fit 方法,那么会产生样本内残差

  • 如果拟合需要 fh,它必须指向拟合中 y 的索引

Xsktime 兼容格式的时间序列,可选(默认=None)

用于更新和预测的外生时间序列 应与 fit 中的 y 具有相同的科学类型(SeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index"),则 X.index 必须同时包含 fh 索引引用和 y.index

返回:
y_res : 以 sktime 兼容数据容器格式表示的时间序列时间序列

fh 处的预测残差,索引与 fh 相同。 y_res 与最近传递的 y 具有相同类型: SeriesPanelHierarchical 科学类型,格式相同(见上文)

predict_var(fh=None, X=None, cov=False)[源代码]#

计算/返回方差预测。

状态要求:

需要状态为“已拟合”,即 self.is_fitted=True

在自身中的访问:

  • 以“_”结尾的拟合模型属性

  • self.cutoff, self.is_fitted

写给自己:

如果传入了 fh 且之前未传入,则将其存储到 self.fh 中。

参数:
fh : int, list, np.array 或 ForecastingHorizon,可选 (默认=None)int, list, np.array 或

预测范围编码了要预测的时间戳。如果已经在 fit 中传递,则不应传递。如果在 fit 中未传递,则必须传递,不可选。

X : sktime 兼容格式的时间序列,可选(默认=None)时间序列

用于预测的外生时间序列。应与``fit``中的``y``具有相同的科学类型(SeriesPanel``或``Hierarchical)。如果``self.get_tag(“X-y-must-have-same-index”)``,则``X.index``必须包含``fh``索引引用。

covbool, 可选 (默认=False)

如果为 True,则计算协方差矩阵预测。如果为 False,则计算边际方差预测。

返回:
pred_var : pd.DataFrame, 格式取决于 cov 变量pd.DataFrame,格式依赖于
如果 cov=False:
列名与在 fit/update 中传递的 y 完全相同。

对于无名称的格式,列索引将是一个 RangeIndex。

行索引为 fh,附加级别等于实例级别,

从 y 中可以看出,如果 y 在拟合中是面板或分层的。

条目是变量预测,对于列索引中的变量。给定变量和fh索引的变量预测是一个预测

给定观测数据,计算该变量和索引的方差。

如果 cov=True:
列索引是一个多重索引:第一层是变量名(如上所示)

2nd level 是 fh。

行索引为 fh,附加级别等于实例级别,

从 y 中可以看出,如果 y 在拟合中是面板或分层的。

条目是(共)方差预测,对于列索引中的变量 var,并且

行和列中时间索引之间的协方差。

注意:不同变量之间不会返回协方差预测。

reset()[源代码]#

将对象重置为初始化后的干净状态。

使用 reset,使用当前的超参数值(get_params 的结果)运行 __init__。这将移除任何对象属性,除了:

  • 超参数 = __init__ 的参数

  • 包含双下划线的对象属性,即字符串”__”

类和对象方法,以及类属性也不受影响。

返回:
自身

类的实例重置为初始化后的干净状态,但保留当前的超参数值。

注释

等同于 sklearn.clone 但覆盖了 self。在调用 self.reset() 之后,self 的值等于 type(self)(**self.get_params(deep=False))

save(path=None, serialization_format='pickle')[源代码]#

将序列化的自身保存到类字节对象或 (.zip) 文件中。

行为:如果 path 是 None,返回一个内存中的序列化自身;如果 path 是一个文件位置,将自身存储在该位置作为一个 zip 文件。

保存的文件是包含以下内容的zip文件:_metadata - 包含自身的类,即 type(self) _obj - 序列化的自身。此类使用默认的序列化(pickle)。

参数:
路径无或文件位置 (str 或 Path)

如果为 None,则将 self 保存到内存中的对象;如果为文件位置,则将 self 保存到该文件位置。如果:

path=”estimator” 则会在当前工作目录下生成一个名为 estimator.zip 的压缩文件。path=”/home/stored/estimator” 则会在 /home/stored/ 目录下存储一个名为 estimator.zip 的压缩文件。

serialization_format: str, default = “pickle”

用于序列化的模块。可用的选项是 “pickle” 和 “cloudpickle”。请注意,非默认格式可能需要安装其他软依赖。

返回:
如果 path 是 None - 内存中序列化的自身
如果 path 是文件位置 - 带有文件引用的 ZipFile
score(y, X=None, fh=None)[源代码]#

使用MAPE(非对称)对地面实况进行分数预测。

参数:
ypd.Series, pd.DataFrame, 或 np.ndarray (1D 或 2D)

时间序列评分

fhint, list, array-like 或 ForecastingHorizon, 可选 (默认=None)

预测者通过前瞻的步骤来预测未来。

Xpd.DataFrame,或 2D np.array,可选(默认=None)

外生时间序列评分,如果 self.get_tag(“X-y-must-have-same-index”),则 X.index 必须包含 y.index

返回:
分数浮动

self.predict(fh, X) 相对于 y_test 的 MAPE 损失。

set_config(**config_dict)[源代码]#

将配置标志设置为给定值。

参数:
config_dictdict

配置名称 : 配置值对的字典。有效的配置、值及其含义如下所示:

显示str, “diagram” (默认), 或 “text”

Jupyter 内核如何显示实例

  • “diagram” = html 盒子图表示

  • “text” = 字符串打印输出

print_changed_onlybool, 默认=True

是否仅打印与默认值不同的自身参数(False),或打印所有参数名称和值(False)。不嵌套,即仅影响自身,而不影响组件估计器。

警告str, “on” (默认), 或 “off”

是否引发警告,仅影响来自 sktime 的警告

  • “on” = 将引发来自 sktime 的警告

  • “off” = 不会从 sktime 引发警告

后端:并行str, 可选, 默认=”None”

在广播/矢量化时用于并行化的后端,可以是以下之一

  • “None”: 按顺序执行循环,简单的列表推导

  • “loky”、“multiprocessing” 和 “threading”:使用 joblib.Parallel

  • “joblib”:自定义和第三方 joblib 后端,例如 spark

  • “dask”: 使用 dask,环境需要 dask

backend:parallel:paramsdict, 可选, 默认={} (不传递参数)

传递给并行化后端的附加参数作为配置。有效键取决于 backend:parallel 的值:

  • “None”: 没有额外参数,backend_params 被忽略

  • “loky”, “multiprocessing” 和 “threading”: 默认的 joblib 后端 任何有效的 joblib.Parallel 键都可以在这里传递,例如 n_jobs,除了 backend 直接由 backend 控制。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 的默认值。

  • “joblib”:自定义和第三方 joblib 后端,例如 spark。任何 joblib.Parallel 的有效键都可以在这里传递,例如,n_jobsbackend 在这种情况下必须作为 backend_params 的键传递。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 的默认值。

  • “dask”:任何 dask.compute 的有效键都可以传递,例如,scheduler

记住数据bool, 默认=True

是否在 fit 中存储 self._X 和 self._y,并在 update 中更新。如果为 True,则存储并更新 self._X 和 self._y。如果为 False,则不存储和更新 self._X 和 self._y。这在使用 save 时减少了序列化的大小,但 update 将默认执行“什么都不做”而不是“重新拟合所有已见数据”。

返回:
self自我引用。

注释

更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。

set_params(**params)[源代码]#

设置此对象的参数。

该方法适用于简单的估计器以及复合对象。对于复合对象,即包含其他对象的对象,可以使用参数键字符串 <component>__<parameter> 来访问组件 <component> 中的 <parameter>。如果这使得引用明确,例如没有两个组件的参数名称是 <parameter>,则也可以使用不带 <component>__ 的字符串 <parameter>

参数:
**参数dict

BaseObject 参数,键必须是 <组件>__<参数> 字符串。如果唯一存在于 get_params 键中,__ 后缀可以别名完整字符串。

返回:
self引用自身(在参数设置之后)
set_random_state(random_state=None, deep=True, self_policy='copy')[源代码]#

为 self 设置 random_state 伪随机种子参数。

通过 estimator.get_params 查找名为 random_state 的参数,并通过 set_params 将其设置为由 random_state 派生的整数。这些整数通过 sample_dependent_seed 的链哈希采样得到,并保证种子随机生成器的伪随机独立性。

根据 self_policy 应用于 estimator 中的 random_state 参数,并且仅当 deep=True 时应用于剩余的组件估计器。

注意:即使 self 没有 random_state,或者没有任何组件有 random_state 参数,也会调用 set_params。因此,set_random_state 将重置任何 scikit-base 估计器,即使那些没有 random_state 参数的估计器。

参数:
random_stateint, RandomState 实例或 None, 默认=None

伪随机数生成器,用于控制随机整数的生成。在多次函数调用中传递整数以获得可重现的输出。

深度bool, 默认=True

是否在子估计器中设置随机状态。如果为 False,则仅设置 selfrandom_state 参数(如果存在)。如果为 True,则还会在子估计器中设置 random_state 参数。

self_policystr, 可以是以下之一 {“copy”, “keep”, “new”}, 默认=”copy”
  • “复制” : estimator.random_state 被设置为输入的 random_state

  • “保持”:estimator.random_state 保持不变

  • “new” : estimator.random_state 被设置为一个新的随机状态,

源自输入 random_state,并且通常与它不同

返回:
self自我引用
set_tags(**tag_dict)[源代码]#

将动态标签设置为给定值。

参数:
**标签字典dict

标签名称:标签值对的字典。

返回:
自我

自我引用。

注释

通过在 tag_dict 中设置标签值,将对象状态更改为 self 中的动态标签。

update(y, X=None, update_params=True)[源代码]#

更新截止值,并可选地更新拟合参数。

如果没有实现特定的估计器更新方法,默认的回退方式如下:

  • update_params=True: 拟合所有迄今为止的观测数据

  • update_params=False: 更新截止值并仅记住数据

状态要求:

需要状态为“已拟合”,即 self.is_fitted=True

在自身中的访问:

  • 以“_”结尾的拟合模型属性

  • self.cutoff, self.is_fitted

写给自己:

  • self.cutoff 更新为在 y 中看到的最新索引。

  • 如果 update_params=True,则更新以 “_” 结尾的拟合模型属性。

参数:
y : 以 sktime 兼容数据容器格式表示的时间序列。时间序列

用于更新预测器的时间序列。

sktime 中的单个数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype

  • Series 类型 = 单个时间序列,传统预测。pd.DataFramepd.Series``np.ndarray``(1D 或 2D)

  • Panel 类型 = 时间序列集合,全局/面板预测。pd.DataFrame 带有 2 级行 MultiIndex (实例, 时间)3D np.ndarray (实例, 变量, 时间)list 类型的 Series pd.DataFrame

  • Hierarchical 类型 = 分层集合,用于分层预测。pd.DataFrame 带有3个或更多级别的行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)

有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程 examples/01_forecasting.ipynb

X : sktime 兼容格式的时间序列,可选(默认=None)。时间序列

用于更新模型拟合的外生时间序列应与 y 具有相同的 scitype`(``Series`PanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index"),则 X.index 必须包含 y.index

更新参数bool, 可选 (默认=True)

是否应更新模型参数。如果 False,则仅更新截止值,模型参数(例如,系数)不会更新。

返回:
self自我引用
update_predict(y, cv=None, X=None, update_params=True, reset_forecaster=True)[源代码]#

在测试集上迭代地进行预测并更新模型。

简写形式,用于执行多个 update / predict 执行链,基于时间分割器 cv 进行数据回放。

与以下相同(如果只有 ycv 是非默认值):

  1. self.update(y=cv.split_series(y)[0][0])

  2. 记住 self.predict() (稍后在单个批次中返回)

  3. self.update(y=cv.split_series(y)[1][0])

  4. 记住 self.predict() (稍后在单个批次中返回)

  5. 等等

  6. 返回所有记忆中的预测

如果没有实现特定的估计器更新方法,默认的回退方式如下:

  • update_params=True: 拟合所有迄今为止的观测数据

  • update_params=False: 更新截止值并仅记住数据

状态要求:

需要状态为“已拟合”,即 self.is_fitted=True

在自身中的访问:

  • 以“_”结尾的拟合模型属性

  • self.cutoff, self.is_fitted

写入自身(除非 reset_forecaster=True):
  • self.cutoff 更新为在 y 中看到的最新索引。

  • 如果 update_params=True,则更新以 “_” 结尾的拟合模型属性。

如果 reset_forecaster=True,则不更新状态。

参数:
y : 以 sktime 兼容数据容器格式表示的时间序列。时间序列

用于更新预测器的时间序列。

sktime 中的单个数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype

  • Series 类型 = 单个时间序列,传统预测。pd.DataFramepd.Series``np.ndarray``(1D 或 2D)

  • Panel 类型 = 时间序列集合,全局/面板预测。pd.DataFrame 带有 2 级行 MultiIndex (实例, 时间)3D np.ndarray (实例, 变量, 时间)list 类型的 Series pd.DataFrame

  • Hierarchical 类型 = 分层集合,用于分层预测。pd.DataFrame 带有3个或更多级别的行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)

有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程 examples/01_forecasting.ipynb

cv从 BaseSplitter 继承的时间交叉验证生成器,可选

例如,SlidingWindowSplitterExpandingWindowSplitter;默认 = 使用 initial_window=1 的 ExpandingWindowSplitter,并且默认情况下,y/X 中的单个数据点会被逐个添加并进行预测,initial_window = 1step_length = 1fh = 1

Xsktime 兼容格式的时间序列,可选(默认=None)

用于更新和预测的外生时间序列 应与 fit 中的 y 具有相同的科学类型(SeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index"),则 X.index 必须包含 fh 索引引用。

更新参数bool, 可选 (默认=True)

是否应更新模型参数。如果 False,则仅更新截止值,模型参数(例如,系数)不会更新。

reset_forecasterbool, 可选 (默认=True)
  • 如果为真,将不会改变预测器的状态,即,更新/预测序列是在副本上运行的,并且截止点、模型参数、数据内存不会改变。

  • 如果为 False,将在运行 update/predict 序列时更新 self,就像直接调用 update/predict 一样。

返回:
y_pred对象,用于从多个分割批次中汇总点预测

格式取决于对(截止点,绝对地平线)的预测总体

  • 如果绝对水平点的集合是唯一的:类型是 sktime 兼容数据容器格式的时间序列 输出中抑制了截止点 具有与最近传递的 y 相同的类型:Series、Panel、Hierarchical 科学类型,相同格式(见上文)

  • 如果绝对地平线点的集合不是唯一的:类型是 pandas DataFrame,行和列索引是时间戳 行索引对应于从列索引预测的截止点 列索引对应于预测的绝对地平线 条目是从行索引预测的列索引的点预测 如果在该(截止,地平线)对上没有进行预测,则条目为 nan

update_predict_single(y=None, fh=None, X=None, update_params=True)[源代码]#

使用新数据更新模型并进行预测。

此方法对于在单一步骤中进行更新和预测非常有用。

如果没有实现特定的估计器更新方法,默认的回退操作是先更新,然后预测。

状态要求:

需要状态为“已拟合”。

在自身中的访问:

以“_”结尾的拟合模型属性。指向已见数据的指针,self._y 和 self.X self.cutoff, self._is_fitted 如果 update_params=True,以“_”结尾的模型属性。

写给自己:

通过追加行来更新 self._y 和 self._X 为 yX。将 self.cutoff 和 self._cutoff 更新为在 y 中看到的最后一个索引。如果 update_params=True,

更新以“_”结尾的拟合模型属性。

参数:
y : 以 sktime 兼容数据容器格式表示的时间序列。时间序列

用于更新预测器的时间序列。

sktime 中的单个数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype

  • Series 类型 = 单个时间序列,传统预测。pd.DataFramepd.Series``np.ndarray``(1D 或 2D)

  • Panel 类型 = 时间序列集合,全局/面板预测。pd.DataFrame 带有 2 级行 MultiIndex (实例, 时间)3D np.ndarray (实例, 变量, 时间)list 类型的 Series pd.DataFrame

  • Hierarchical 类型 = 分层集合,用于分层预测。pd.DataFrame 带有3个或更多级别的行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)

有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程 examples/01_forecasting.ipynb

fh : int, list, np.array 或 ForecastingHorizon,可选 (默认=None)int, list, np.array 或

预测范围编码了要预测的时间戳。如果已经在 fit 中传递,则不应传递。如果在 fit 中未传递,则必须传递,不可选。

Xsktime 兼容格式的时间序列,可选(默认=None)

用于更新和预测的外生时间序列 应与 fit 中的 y 具有相同的科学类型(SeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index"),则 X.index 必须包含 fh 索引引用。

更新参数bool, 可选 (默认=True)

是否应更新模型参数。如果 False,则仅更新截止值,模型参数(例如,系数)不会更新。

返回:
y_predsktime 兼容数据容器格式中的时间序列

fh 处的点预测,具有与 fh 相同的索引。y_pred 与最近传递的 y 具有相同类型:SeriesPanelHierarchical 科学类型,相同格式(见上文)