MLPClassifier#

class MLPClassifier(n_epochs=2000, batch_size=16, callbacks=None, verbose=False, loss='categorical_crossentropy', metrics=None, random_state=None, activation='sigmoid', use_bias=True, optimizer=None)[源代码][源代码]#

多层感知器网络 (MLP),如 [1] 中所述。

参数:
应该在此列出继承的字段吗?
n_epochsint, 默认 = 2000

训练模型的轮次数

batch_sizeint, 默认 = 16

每次梯度更新的样本数量。

random_stateint 或 None, 默认=None

随机数生成的种子。

详细布尔值, 默认 = False

是否输出额外信息

损失字符串, 默认值=”mean_squared_error”

keras 模型的拟合参数

优化器keras.optimizer, 默认=keras.optimizers.Adam(),
指标字符串列表,默认=[“准确率”]
激活字符串或 tf 可调用对象,默认值为 “sigmoid”

输出线性层中使用的激活函数。可用激活函数列表:https://keras.io/api/layers/activations/

use_bias布尔值,默认 = True

该层是否使用偏置向量。

优化器keras.optimizers 对象,默认 = Adam(lr=0.01)

指定要使用的优化器和学习率。

属性:
is_fitted

是否已调用 fit

注释

改编自源代码 hfawaz/dl-4-tsc 的实现

参考文献

[1]

Wang 等人,时间序列分类从

scratch with deep neural networks: 一个强大的基线, 国际神经网络联合会议 (IJCNN), 2017.

示例

>>> from sktime.classification.deep_learning.mlp import MLPClassifier
>>> from sktime.datasets import load_unit_test
>>> X_train, y_train = load_unit_test(split="train")
>>> mlp = MLPClassifier(n_epochs=20,batch_size=4)  
>>> mlp.fit(X_train, y_train)  
MLPClassifier(...)

方法

build_model(input_shape, n_classes, **kwargs)

构建一个已编译但未训练的 Keras 模型,该模型已准备好进行训练。

check_is_fitted()

检查估计器是否已被拟合。

clone()

获取具有相同超参数的对象副本。

clone_tags(estimator[, tag_names])

从另一个估计器克隆标签作为动态覆盖。

create_test_instance([parameter_set])

如果可能,构造估计器实例。

create_test_instances_and_names([parameter_set])

创建所有测试实例的列表及其名称的列表。

fit(X, y)

拟合时间序列分类器到训练数据。

fit_predict(X, y[, cv, change_state])

拟合并预测X中序列的标签。

fit_predict_proba(X, y[, cv, change_state])

拟合并预测X中序列的标签概率。

get_class_tag(tag_name[, tag_value_default])

获取类标签的值。

get_class_tags()

从类及其所有父类中获取类标签。

get_config()

获取 self 的配置标志

get_fitted_params([deep])

获取拟合参数。

get_param_defaults()

获取对象的参数默认值。

get_param_names([sort])

获取对象的参数名称。

get_params([deep])

获取此对象的参数值字典。

get_tag(tag_name[, tag_value_default, ...])

从估计器类获取标签值和动态标签覆盖。

get_tags()

从估计器类和动态标签覆盖中获取标签。

get_test_params([parameter_set])

返回估计器的测试参数设置。

is_composite()

检查对象是否由其他 BaseObjects 组成。

load_from_path(serial)

从文件位置加载对象。

load_from_serial(serial)

从序列化的内存容器中加载对象。

predict(X)

预测X中序列的标签。

predict_proba(X)

预测X中序列的标签概率。

reset()

将对象重置为初始化后的干净状态。

save([path, serialization_format])

将序列化的自身保存到类字节对象或 (.zip) 文件中。

score(X, y)

在X上,预测标签与真实标签进行评分。

set_config(**config_dict)

将配置标志设置为给定值。

set_params(**params)

设置此对象的参数。

set_random_state([random_state, deep, ...])

设置 random_state 伪随机种子参数为 self。

set_tags(**tag_dict)

将动态标签设置为给定值。

summary()

返回模型拟合的损失/指标的汇总函数。

build_model(input_shape, n_classes, **kwargs)[源代码][源代码]#

构建一个已编译但未训练的 Keras 模型,该模型已准备好进行训练。

在 sktime 中,时间序列存储在形状为 (d, m) 的 numpy 数组中,其中 d 是维度数,m 是序列长度。Keras/tensorflow 假设数据形状为 (m, d)。此方法也假设 (m, d)。转置应在拟合时进行。

参数:
input_shape元组

输入层的数据形状应为 (m,d)

n_classes: int

类的数量,这将成为输出层的大小

返回:
输出一个编译好的 Keras 模型
classmethod get_test_params(parameter_set='default')[源代码][源代码]#

返回估计器的测试参数设置。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试中。如果没有为某个值定义特殊参数,将返回 "default" 集。对于分类器,应提供一组“default”参数用于一般测试,如果一般集不能产生适合比较的概率,则应提供一组“results_comparison”参数用于与先前记录的结果进行比较。

返回:
参数dict 或 dict 的列表,默认={}

用于创建类的测试实例的参数。每个字典都是用于构造一个“有趣的”测试实例的参数,即 MyClass(**params)MyClass(**params[i]) 创建一个有效的测试实例。create_test_instance 使用 params 中的第一个(或唯一一个)字典。

check_is_fitted()[源代码]#

检查估计器是否已被拟合。

引发:
NotFittedError

如果估计器尚未拟合。

clone()[源代码]#

获取具有相同超参数的对象副本。

克隆是一个在初始化后状态下的不同对象,没有共享引用。此函数等同于返回 self 的 sklearn.clone。

引发:
如果克隆不符合规范,由于 __init__ 存在错误,将引发 RuntimeError。

注释

如果成功,值等于 type(self)(**self.get_params(deep=False))

clone_tags(estimator, tag_names=None)[源代码]#

从另一个估计器克隆标签作为动态覆盖。

参数:
估计器继承自 BaseEstimator 的估计器
标签名称str 或 str 列表,默认 = None

要克隆的标签名称。如果为 None,则使用估计器中的所有标签作为 tag_names

返回:
自我

自我引用。

注释

通过在 tag_set 中设置来自估计器的标签值,将对象状态更改为 self 中的动态标签。

classmethod create_test_instance(parameter_set='default')[源代码]#

如果可能,构造估计器实例。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
实例使用默认参数的类实例

注释

get_test_params 可以返回字典或字典列表。此函数获取 get_test_params 返回的第一个或单个字典,并使用该字典构建对象。

classmethod create_test_instances_and_names(parameter_set='default')[源代码]#

创建所有测试实例的列表及其名称的列表。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
objscls 实例列表

第 i 个实例是 cls(**cls.get_test_params()[i])

名称list of str, 与 objs 长度相同

第 i 个元素是测试中 obj 的第 i 个实例的名称,约定为 {cls.__name__}-{i},如果存在多个实例,否则为 {cls.__name__}

fit(X, y)[源代码]#

拟合时间序列分类器到训练数据。

状态变化:

将状态更改为“已拟合”。

写给自己:

将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。

参数:
Xsktime 兼容的时间序列面板数据容器,属于面板科学类型

时间序列以拟合估计器。

可以是任何 Panel 类型科学 ,例如:

  • pd-multiindex: 具有列 = 变量、索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array (任意数量的维度,等长的序列),形状为 [n_instances, n_dimensions, series_length]

  • 或其他任何支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参见 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

ysktime 兼容的表格数据容器,表格科学类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合。第0个索引对应X中的实例索引,第1个索引(如果适用)对应X中的多输出向量索引。支持的sktime类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame

返回:
self自我引用。
fit_predict(X, y, cv=None, change_state=True)[源代码]#

拟合并预测X中序列的标签。

用于生成样本内预测和交叉验证的样本外预测的便捷方法。

如果 change_state=True,则写入自身:

将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。

如果 change_state=False,则不更新状态。

参数:
Xsktime 兼容的时间序列面板数据容器,属于面板科学类型

时间序列以拟合并预测标签。

可以是任何 Panel 类型科学 ,例如:

  • pd-multiindex: 具有列 = 变量、索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array (任意数量的维度,等长的序列),形状为 [n_instances, n_dimensions, series_length]

  • 或其他任何支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参见 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

ysktime 兼容的表格数据容器,表格科学类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合。第0个索引对应X中的实例索引,第1个索引(如果适用)对应X中的多输出向量索引。支持的sktime类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame

cvNone, int, 或 sklearn 交叉验证对象,可选,默认=None
  • None : 预测是在样本内进行的,等同于 fit(X, y).predict(X)

  • cv : 预测等同于 fit(X_train, y_train).predict(X_test),其中多个 X_train, y_train, X_test 是从 cv 折叠中获得的。返回的 y 是所有测试折叠预测的并集,cv 测试折叠必须不相交

  • int : 等同于 cv=KFold(cv, shuffle=True, random_state=x),即,k折交叉验证的样本外预测,其中 random_state x 如果存在则从 self 获取,否则 x=None

change_statebool, 可选 (默认=True)
  • 如果为 False,将不会改变分类器的状态,即,fit/predict 序列在副本上运行,self 不会改变

  • 如果为真,将使自身适应完整的 X 和 y,最终状态将等同于运行 fit(X, y)

返回:
y_pred : sktime 兼容的表格数据容器,属于 Table 科学类型sktime 兼容的表格数据容器,属于 Table

预测的类别标签

一维可迭代对象,形状为 [n_instances],或二维可迭代对象,形状为 [n_instances, n_dimensions]。

0-th 索引对应于 X 中的实例索引,1-st 索引(如果适用)对应于 X 中的多输出向量索引。

1D np.npdarray,如果 y 是单变量(一维);否则,与 fit 中传入的 y 类型相同

fit_predict_proba(X, y, cv=None, change_state=True)[源代码]#

拟合并预测X中序列的标签概率。

用于生成样本内预测和交叉验证的样本外预测的便捷方法。

如果 change_state=True,则写入自身:

将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。

如果 change_state=False,则不更新状态。

参数:
Xsktime 兼容的时间序列面板数据容器,属于面板科学类型

时间序列以拟合并预测标签。

可以是任何 Panel 类型科学 ,例如:

  • pd-multiindex: 具有列 = 变量、索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array (任意数量的维度,等长的序列),形状为 [n_instances, n_dimensions, series_length]

  • 或其他任何支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参见 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

ysktime 兼容的表格数据容器,表格科学类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合。第0个索引对应X中的实例索引,第1个索引(如果适用)对应X中的多输出向量索引。支持的sktime类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame

cvNone, int, 或 sklearn 交叉验证对象,可选,默认=None
  • None : 预测是在样本内进行的,等同于 fit(X, y).predict(X)

  • cv : 预测等同于 fit(X_train, y_train).predict(X_test),其中多个 X_train, y_train, X_test 是从 cv 折叠中获得的。返回的 y 是所有测试折叠预测的并集,cv 测试折叠必须不相交

  • int : 等同于 cv=KFold(cv, shuffle=True, random_state=x),即,k折交叉验证的样本外预测,其中 random_state x 如果存在则从 self 获取,否则 x=None

change_statebool, 可选 (默认=True)
  • 如果为 False,将不会改变分类器的状态,即,fit/predict 序列在副本上运行,self 不会改变

  • 如果为真,将使自身适应完整的 X 和 y,最终状态将等同于运行 fit(X, y)

返回:
y_pred形状为 [n_instances, n_classes] 的二维 np.array,类型为 int

预测的类别标签概率 0-th 索引对应于 X 中的实例索引 1-st 索引对应于类别索引,顺序与 self.classes_ 中的顺序相同 条目是预测的类别概率,总和为 1

classmethod get_class_tag(tag_name, tag_value_default=None)[源代码]#

获取类标签的值。

不返回从实例上定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。

参数:
标签名称str

标签值的名称。

tag_value_default任何

如果未找到标签,则使用默认/回退值。

返回:
标签值

self 中 tag_name 标签的值。如果未找到,则返回 tag_value_default

classmethod get_class_tags()[源代码]#

从类及其所有父类中获取类标签。

从 _tags 类属性中检索标签:值对。不返回在实例上通过 set_tags 或 clone_tags 设置的动态标签信息。

返回:
collected_tagsdict

类标签名称字典:标签值对。通过嵌套继承从 _tags 类属性中收集。

get_config()[源代码]#

获取 self 的配置标志

返回:
config_dictdict

配置名称 : 配置值对的字典。从 _config 类属性通过嵌套继承收集,然后是 _config_dynamic 对象属性的任何覆盖和新标签。

get_fitted_params(deep=True)[源代码]#

获取拟合参数。

状态要求:

需要状态为“已拟合”。

参数:
深度bool, 默认=True

是否返回组件的拟合参数。

  • 如果为 True,将返回此对象的参数名称 : 值的字典,包括可拟合组件的拟合参数(= BaseEstimator 值的参数)。

  • 如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的拟合参数。

返回:
fitted_params带有字符串键的字典

拟合参数的字典,paramname : paramvalue 键值对包括:

  • always: 此对象的所有拟合参数,通过 get_param_names 获取的值是该键对应的拟合参数值,属于此对象

  • 如果 deep=True,还包含组件参数的键/值对,组件的参数被索引为 [componentname]__[paramname],所有 componentname 的参数都以 paramname 的形式出现,并带有其值。

  • 如果 deep=True,还包含任意层级的组件递归,例如 [componentname]__[componentcomponentname]__[paramname] 等。

classmethod get_param_defaults()[源代码]#

获取对象的参数默认值。

返回:
default_dict: dict[str, Any]

键是 cls 中在 __init__ 中定义了默认值的所有参数,值是 __init__ 中定义的默认值。

classmethod get_param_names(sort=True)[源代码]#

获取对象的参数名称。

参数:
排序bool, 默认=True

是否按字母顺序返回参数名称(True),或者按它们在类 __init__ 中出现的顺序返回(False)。

返回:
param_names: list[str]

cls 的参数名称列表。如果 sort=False,则按其在类 __init__ 中出现的顺序排列。如果 sort=True,则按字母顺序排列。

get_params(deep=True)[源代码]#

获取此对象的参数值字典。

参数:
深度bool, 默认=True

是否返回组件的参数。

  • 如果为真,将返回此对象的参数名称 : 值的字典,包括组件的参数(= BaseObject 值的参数)。

  • 如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的参数。

返回:
参数带有字符串键的字典

参数的字典,paramname : paramvalue 键值对包括:

  • 总是:此对象的所有参数,通过 get_param_names 获取的值是该键的参数值,此对象的值始终与构造时传递的值相同。

  • 如果 deep=True,还包含组件参数的键/值对,组件的参数被索引为 [componentname]__[paramname]componentname 的所有参数都以其值的形式显示为 paramname

  • 如果 deep=True,还包含任意层级的组件递归,例如,[componentname]__[componentcomponentname]__[paramname] 等。

get_tag(tag_name, tag_value_default=None, raise_error=True)[源代码]#

从估计器类获取标签值和动态标签覆盖。

参数:
标签名称str

要检索的标签名称

tag_value_default任何类型,可选;默认=None

如果未找到标签,则使用默认/回退值

raise_error布尔

当未找到标签时是否引发 ValueError

返回:
tag_value任何

self 中 tag_name 标签的值。如果未找到,如果 raise_error 为 True,则返回错误,否则返回 tag_value_default

引发:
如果 raise_error 为 True,即如果 tag_name 不在其中,则引发 ValueError。
self.get_tags().keys()
get_tags()[源代码]#

从估计器类和动态标签覆盖中获取标签。

返回:
collected_tagsdict

标签名称 : 标签值对的字典。从 _tags 类属性通过嵌套继承收集,然后是 _tags_dynamic 对象属性的任何覆盖和新标签。

is_composite()[源代码]#

检查对象是否由其他 BaseObjects 组成。

复合对象是一个包含对象的对象,作为参数。在实例上调用,因为这可能因实例而异。

返回:
composite: bool

一个对象是否具有任何值为 BaseObjects 的参数。

property is_fitted[源代码]#

是否已调用 fit

classmethod load_from_path(serial)[源代码]#

从文件位置加载对象。

参数:
串行zip 文件的名称。
返回:
反序列化自身,结果输出到 path,通过 cls.save(path)
classmethod load_from_serial(serial)[源代码]#

从序列化的内存容器中加载对象。

参数:
serial: ``cls.save(None)`` 输出的第一个元素

这是一个大小为3的元组。第一个元素表示pickle序列化的实例。第二个元素表示h5py序列化的``keras``模型。第三个元素表示``.fit()``的历史记录的pickle序列化。

返回:
反序列化自身导致输出 serial,来自 cls.save(None)
predict(X)[源代码]#

预测X中序列的标签。

参数:
Xsktime 兼容的时间序列面板数据容器,属于面板科学类型

时间序列以预测标签。

可以是任何 Panel 类型科学 ,例如:

  • pd-multiindex: 具有列 = 变量、索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array (任意数量的维度,等长的序列),形状为 [n_instances, n_dimensions, series_length]

  • 或其他任何支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参见 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

返回:
y_pred : sktime 兼容的表格数据容器,属于 Table 科学类型sktime 兼容的表格数据容器,属于 Table

预测的类别标签

一维可迭代对象,形状为 [n_instances],或二维可迭代对象,形状为 [n_instances, n_dimensions]。

0-th 索引对应于 X 中的实例索引,1-st 索引(如果适用)对应于 X 中的多输出向量索引。

1D np.npdarray,如果 y 是单变量(一维);否则,与 fit 中传入的 y 类型相同

predict_proba(X)[源代码]#

预测X中序列的标签概率。

参数:
Xsktime 兼容的时间序列面板数据容器,属于面板科学类型

时间序列以预测标签。

可以是任何 Panel 类型科学 ,例如:

  • pd-multiindex: 具有列 = 变量、索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array (任意数量的维度,等长的序列),形状为 [n_instances, n_dimensions, series_length]

  • 或其他任何支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参见 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

返回:
y_pred形状为 [n_instances, n_classes] 的二维 np.array,类型为 int

预测的类别标签概率 0-th 索引对应于 X 中的实例索引 1-st 索引对应于类别索引,顺序与 self.classes_ 中的顺序相同 条目是预测的类别概率,总和为 1

reset()[源代码]#

将对象重置为初始化后的干净状态。

使用 reset,使用当前的超参数值(get_params 的结果)运行 __init__。这将移除任何对象属性,除了:

  • 超参数 = __init__ 的参数

  • 包含双下划线的对象属性,即字符串”__”

类和对象方法,以及类属性也不受影响。

返回:
自身

类的实例重置为干净的初始化后状态,但保留当前的超参数值。

注释

等同于 sklearn.clone 但覆盖 self。在调用 self.reset() 后,self 的值等于 type(self)(**self.get_params(deep=False))

save(path=None, serialization_format='pickle')[源代码]#

将序列化的自身保存到类字节对象或 (.zip) 文件中。

行为:如果 path 是 None,则返回内存中的序列化自身;如果 path 是一个文件,则将 zip 文件以该名称存储在指定位置。zip 文件的内容包括:_metadata - 包含自身的类,即 type(self)。_obj - 序列化的自身。此类使用默认的序列化(pickle)。keras/ - 模型、优化器和状态存储在此目录中。history - 序列化的历史对象。

参数:
路径无或文件位置(字符串或路径)

如果为 None,则将 self 保存到内存中的对象;如果为文件位置,则将 self 保存到该文件位置。例如:

path=”estimator” 则在当前工作目录(cwd)下会生成一个名为 estimator.zip 的压缩文件。path=”/home/stored/estimator” 则会在 /home/stored/ 目录下存储一个名为 estimator.zip 的压缩文件。

序列化格式str, 默认 = “pickle”

用于序列化的模块。可用选项在 sktime.base._base.SERIALIZATION_FORMATS 下提供。请注意,非默认格式可能需要安装其他软依赖项。

返回:
如果 path 为 None - 内存中的序列化自身
如果 path 是文件位置 - 带有文件引用的 ZipFile
score(X, y) float[源代码]#

在X上,预测标签与真实标签进行评分。

参数:
Xsktime 兼容的时间序列面板数据容器,属于面板科学类型

时间序列以评分预测标签。

可以是任何 Panel 类型科学 ,例如:

  • pd-multiindex: 具有列 = 变量、索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array (任意数量的维度,等长的序列),形状为 [n_instances, n_dimensions, series_length]

  • 或其他任何支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参见 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

ysktime 兼容的表格数据容器,表格科学类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合。第0个索引对应X中的实例索引,第1个索引(如果适用)对应X中的多输出向量索引。支持的sktime类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame

返回:
浮点数,预测(X) 与 y 的准确度得分
set_config(**config_dict)[源代码]#

将配置标志设置为给定值。

参数:
config_dictdict

配置名称 : 配置值对的字典。有效的配置、值及其含义如下所示:

显示str, “diagram” (默认), 或 “text”

jupyter 内核如何显示 self 的实例

  • “diagram” = html 盒子图表示

  • “text” = 字符串打印输出

print_changed_onlybool, 默认=True

是否仅打印与默认值不同的自身参数(False),或者打印所有参数名称和值(False)。不嵌套,即仅影响自身,不影响组件估计器。

警告str, “on” (默认), 或 “off”

是否引发警告,仅影响来自 sktime 的警告

  • “on” = 将引发来自 sktime 的警告

  • “off” = 不会从 sktime 引发警告

后端:并行str, 可选, 默认=”None”

在广播/矢量化时用于并行化的后端,是以下之一

  • “None”: 按顺序执行循环,简单的列表推导

  • “loky”, “multiprocessing” 和 “threading”: 使用 joblib.Parallel

  • “joblib”: 自定义和第三方 joblib 后端,例如 spark

  • “dask”: 使用 dask,需要在环境中安装 dask

backend:parallel:paramsdict, 可选, 默认={} (未传递参数)

传递给并行化后端的附加参数作为配置。有效键取决于 backend:parallel 的值:

  • “None”: 没有额外参数,backend_params 被忽略

  • “loky”, “multiprocessing” 和 “threading”: 默认 joblib 后端 任何有效的 joblib.Parallel 键都可以在这里传递,例如 n_jobs,除了 backend 直接由 backend 控制。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 默认值。

  • “joblib”:自定义和第三方 joblib 后端,例如 spark。任何 joblib.Parallel 的有效键都可以在这里传递,例如 n_jobs,在这种情况下,backend 必须作为 backend_params 的键传递。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 的默认值。

  • “dask”: 任何 dask.compute 的有效键都可以传递,例如 scheduler

返回:
self自我引用。

注释

更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。

set_params(**params)[源代码]#

设置此对象的参数。

该方法适用于简单估计器以及复合对象。对于复合对象,即包含其他对象的对象,可以使用参数键字符串 <component>__<parameter> 来访问组件 <component> 中的 <parameter>。如果这使得引用明确,例如没有两个组件的参数名称相同,也可以使用不带 <component>__ 的字符串 <parameter>

参数:
**参数dict

BaseObject 参数,键必须是 <component>__<parameter> 字符串。如果唯一存在于 get_params 键中,__ 后缀可以别名为完整字符串。

返回:
self引用自身(在参数设置之后)
set_random_state(random_state=None, deep=True, self_policy='copy')[源代码]#

设置 random_state 伪随机种子参数为 self。

通过 estimator.get_params 查找名为 random_state 的参数,并通过 set_params 将其设置为由 random_state 派生的整数。这些整数通过 sample_dependent_seed 的链哈希采样得到,并保证种子随机生成器的伪随机独立性。

根据 self_policy 应用于 estimator 中的 random_state 参数,并且仅当 deep=True 时应用于剩余的组件估计器。

注意:即使 self 没有 random_state,或者没有任何组件具有 random_state 参数,也会调用 set_params。因此,set_random_state 将重置任何 scikit-base 估计器,即使它们没有 random_state 参数。

参数:
random_stateint, RandomState 实例或 None, 默认=None

伪随机数生成器,用于控制随机整数的生成。传递 int 以在多次函数调用中获得可重复的输出。

深度bool, 默认=True

是否在子估计器中设置随机状态。如果为 False,则仅设置 selfrandom_state 参数(如果存在)。如果为 True,则还会在子估计器中设置 random_state 参数。

self_policystr, 可选值为 {“copy”, “keep”, “new”}, 默认值为 “copy”
  • “复制” : estimator.random_state 被设置为输入的 random_state

  • “保持”:estimator.random_state 保持不变

  • “new” : estimator.random_state 被设置为一个新的随机状态,

派生自输入 random_state,并且通常与它不同。

返回:
self自我引用
set_tags(**tag_dict)[源代码]#

将动态标签设置为给定值。

参数:
**标签字典dict

标签名称:标签值对的字典。

返回:
自我

自我引用。

注释

通过在 tag_dict 中设置标签值,将对象状态更改为 self 中的动态标签。

summary()[源代码]#

返回模型拟合的损失/指标的汇总函数。

返回:
history: dict 或 None,

包含模型训练/验证损失和指标的字典