>>> from sktime.classification.early_classification import TEASER
>>> from sktime.classification.interval_based import TimeSeriesForestClassifier
>>> from sktime.datasets import load_unit_test
>>> X_train, y_train = load_unit_test(split="train", return_X_y=True)
>>> X_test, y_test = load_unit_test(split="test", return_X_y=True)
>>> clf = TEASER(
... classification_points=[6, 16, 24],
... estimator=TimeSeriesForestClassifier(n_estimators=5),
... )
>>> clf.fit(X_train, y_train)
TEASER(...)
>>> y_pred, decisions = clf.predict(X_test)