扩展贪婪分割器#
- class ExpandingGreedySplitter(test_size: int, folds: int = 5, step_length: int | None = None)[源代码][源代码]#
分割器,依次从序列末尾切出测试折叠。
接受一个整数
test_size
,该整数定义了每个折叠测试集中包含的步数。每个折叠的训练集将包含测试集之前所有数据。如果数据包含多个实例,test_size
是 _每个实例_ 的。如果没有定义
step_length
,测试集(每个折叠对应一个)将会是相邻且不相交的,从数据集的末尾开始取。例如,使用
test_size=7
和folds=5
,测试集总共将覆盖数据的最后 35 步,且没有重叠。- 参数:
- test_sizeint 或 float
- 如果为整数:每个折叠测试集中包含的步数。
正式地,步骤是连续的
iloc
索引。- 如果为浮点数:每个折叠中测试集包含的步骤比例,
作为连续
iloc
索引总数的比例。必须在 0.0 和 1.0 之间。比例被四舍五入到下一个更高的样本整数计数(向上取整)。注意:不是起始和结束位置之间的loc
比例,而是连续iloc
索引总数的比例。
- 折叠int, 默认 = 5
折叠次数。
- 步长int, 可选
每个折叠前进的步数。默认为
test_size
。
示例
>>> import numpy as np >>> from sktime.split import ExpandingGreedySplitter
>>> ts = np.arange(10) >>> splitter = ExpandingGreedySplitter(test_size=3, folds=2) >>> list(splitter.split(ts)) [ (array([0, 1, 2, 3]), array([4, 5, 6])), (array([0, 1, 2, 3, 4, 5, 6]), array([7, 8, 9])) ]
方法
clone
()获取具有相同超参数的对象副本。
clone_tags
(estimator[, tag_names])从另一个估计器克隆标签作为动态覆盖。
create_test_instance
([parameter_set])如果可能,构造 Estimator 实例。
create_test_instances_and_names
([parameter_set])创建所有测试实例的列表及其名称列表。
get_class_tag
(tag_name[, tag_value_default])获取类标签的值。
从类及其所有父类中获取类标签。
获取 self 的配置标志
get_cutoffs
([y])返回在 .iloc[] 上下文中的截断点。
get_fh
()返回预测范围。
get_n_splits
([y])返回分割的数量。
获取对象的参数默认值。
get_param_names
([sort])获取对象的参数名称。
get_params
([deep])获取此对象的参数值字典。
get_tag
(tag_name[, tag_value_default, ...])从估计器类获取标签值和动态标签覆盖。
get_tags
()从估计器类获取标签和动态标签覆盖。
get_test_params
([parameter_set])返回拆分器的测试参数设置。
检查对象是否由其他 BaseObjects 组成。
load_from_path
(serial)从文件位置加载对象。
load_from_serial
(serial)从序列化的内存容器中加载对象。
reset
()将对象重置为初始化后的干净状态。
save
([path, serialization_format])将序列化的自身保存到类字节对象或 (.zip) 文件中。
set_config
(**config_dict)将配置标志设置为给定值。
set_params
(**params)设置此对象的参数。
set_random_state
([random_state, deep, ...])设置 random_state 伪随机种子参数为 self。
set_tags
(**tag_dict)将动态标签设置为给定值。
split
(y)获取 y 的训练/测试分割的 iloc 引用。
split_loc
(y)获取 y 的训练/测试分割的 loc 引用。
split_series
(y)将 y 分割为训练和测试窗口。
- clone()[源代码]#
获取具有相同超参数的对象副本。
克隆是一个在初始化后状态下的不同对象,没有共享引用。此函数等同于返回 self 的 sklearn.clone。
- Raises:
- 如果克隆不符合规范,由于
__init__
存在错误,将引发 RuntimeError。
- 如果克隆不符合规范,由于
注释
如果成功,值等于
type(self)(**self.get_params(deep=False))
。
- clone_tags(estimator, tag_names=None)[源代码]#
从另一个估计器克隆标签作为动态覆盖。
- 参数:
- 估计器继承自
BaseEstimator
的估计器 - 标签名称str 或 str 列表, 默认 = None
要克隆的标签名称。如果为 None,则使用估计器中的所有标签作为 tag_names。
- 估计器继承自
- 返回:
- 自我
自我引用。
注释
通过在 tag_set 中设置来自估计器的标签值,将对象状态更改为 self 中的动态标签。
- classmethod create_test_instance(parameter_set='default')[源代码]#
如果可能,构造 Estimator 实例。
- 参数:
- 参数集str, 默认值=”default”
要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。
- 返回:
- 实例使用默认参数的类实例
注释
get_test_params 可以返回字典或字典列表。此函数获取 get_test_params 返回的第一个或单个字典,并用该字典构建对象。
- classmethod create_test_instances_and_names(parameter_set='default')[源代码]#
创建所有测试实例的列表及其名称列表。
- 参数:
- 参数集str, 默认值=”default”
要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。
- 返回:
- objscls 实例列表
第 i 个实例是 cls(**cls.get_test_params()[i])
- 名称list of str, 与 objs 长度相同
第 i 个元素是 obj 在测试中的第 i 个实例的名称,约定为 {cls.__name__}-{i},如果存在多个实例,否则为 {cls.__name__}
- classmethod get_class_tag(tag_name, tag_value_default=None)[源代码]#
获取类标签的值。
不返回在实例上定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。
- 参数:
- 标签名称str
标签值的名称。
- tag_value_default任何
如果未找到标签,则使用默认/回退值。
- 返回:
- 标签值
self 中 tag_name 标签的值。如果未找到,则返回 tag_value_default。
- classmethod get_class_tags()[源代码]#
从类及其所有父类中获取类标签。
从 _tags 类属性中检索标签:值对。不返回从实例中定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。
- 返回:
- collected_tagsdict
类标签名称字典:标签值对。通过嵌套继承从 _tags 类属性中收集。
- get_config()[源代码]#
获取 self 的配置标志
- 返回:
- config_dictdict
配置名称 : 配置值对的字典。从 _config 类属性通过嵌套继承收集,然后是 _config_dynamic 对象属性的任何覆盖和新标签。
- get_cutoffs(y: Series | DataFrame | ndarray | Index | None = None) ndarray [源代码]#
返回在 .iloc[] 上下文中的截断点。
- 参数:
- ypd.Series 或 pd.Index,可选(默认=None)
时间序列分割
- 返回:
- 截止点1D np.ndarray of int
iloc 位置索引,相对于 y,用于截止索引
- get_fh() ForecastingHorizon [源代码]#
返回预测范围。
- 返回:
- fh预测范围
预测范围
- get_n_splits(y: Series | DataFrame | ndarray | Index | None = None) int [源代码]#
返回分割的数量。
- 参数:
- ypd.Index 或 sktime 兼容时间序列格式中的时间序列,
时间序列可以是任何 Series、Panel 或 Hierarchical mtype 格式的索引,或者是要分割的时间序列。如果是时间序列,则被视为等效的 pandas 类型容器的索引:pd.DataFrame、pd.Series、pd-multiindex 或 pd_multiindex_hier mtype。
- 返回:
- n_splits整数
分割的数量。
- classmethod get_param_defaults()[源代码]#
获取对象的参数默认值。
- 返回:
- default_dict: dict[str, Any]
键是 cls 中在 __init__ 中定义了默认值的所有参数,值是 __init__ 中定义的默认值。
- classmethod get_param_names(sort=True)[源代码]#
获取对象的参数名称。
- 参数:
- 排序bool, 默认=True
是否按字母顺序返回参数名称(True),或者按它们在类
__init__
中出现的顺序返回(False)。
- 返回:
- param_names: list[str]
cls 的参数名称列表。如果
sort=False
,则按它们在类__init__
中出现的顺序排列。如果sort=True
,则按字母顺序排列。
- get_params(deep=True)[源代码]#
获取此对象的参数值字典。
- 参数:
- 深度bool, 默认=True
是否返回组件的参数。
如果为 True,将返回此对象的参数名称 : 值的字典,包括组件的参数(= 值为 BaseObject 的参数)。
如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的参数。
- 返回:
- 参数带有字符串键的字典
参数的字典,paramname : paramvalue 键值对包括:
总是:通过 get_param_names 获取的这个对象的所有参数,其值为该键的参数值,这个对象的值总是与构造时传递的值相同。
如果 deep=True,还包含组件参数的键/值对,组件的参数被索引为 [componentname]__[paramname],所有 componentname 的参数都以其值的形式显示为 paramname。
如果 deep=True,还包含任意层级的组件递归,例如,[componentname]__[componentcomponentname]__[paramname],等等。
- get_tag(tag_name, tag_value_default=None, raise_error=True)[源代码]#
从估计器类获取标签值和动态标签覆盖。
- 参数:
- 标签名称str
要检索的标签名称
- tag_value_default任何类型,可选;默认=None
如果未找到标签,则使用默认/回退值
- raise_error布尔
当未找到标签时是否引发 ValueError
- 返回:
- tag_value任何
self 中 tag_name 标签的值。如果未找到,如果 raise_error 为 True,则返回错误,否则返回 tag_value_default。
- Raises:
- 如果 raise_error 为 True,即如果 tag_name 不在其中,则引发 ValueError。
- self.get_tags().keys()
- get_tags()[源代码]#
从估计器类获取标签和动态标签覆盖。
- 返回:
- collected_tagsdict
标签名称 : 标签值对的字典。通过嵌套继承从 _tags 类属性中收集,然后从 _tags_dynamic 对象属性中覆盖和新标签。
- classmethod get_test_params(parameter_set='default')[源代码][源代码]#
返回拆分器的测试参数设置。
- 参数:
- 参数集str, 默认值=”default”
要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回
"default"
集。
- 返回:
- 参数字典或字典列表,默认 = {}
创建类的测试实例的参数 每个字典都是构造一个“有趣的”测试实例的参数,即
MyClass(**params)
或MyClass(**params[i])
创建一个有效的测试实例。create_test_instance
使用params
中的第一个(或唯一一个)字典
- is_composite()[源代码]#
检查对象是否由其他 BaseObjects 组成。
复合对象是一个包含对象的对象,作为参数。在实例上调用,因为这可能因实例而异。
- 返回:
- composite: bool
一个对象是否具有任何值为 BaseObjects 的参数。
- classmethod load_from_path(serial)[源代码]#
从文件位置加载对象。
- 参数:
- 串行ZipFile(path).open(“object”) 的结果
- 返回:
- 反序列化自身,结果输出到
path
,通过cls.save(path)
- 反序列化自身,结果输出到
- classmethod load_from_serial(serial)[源代码]#
从序列化的内存容器中加载对象。
- 参数:
- serial :
cls.save(None)
输出的第一个元素输出中的第一个元素
- serial :
- 返回:
- 反序列化自身,结果输出为
serial
,来自cls.save(None)
- 反序列化自身,结果输出为
- reset()[源代码]#
将对象重置为初始化后的干净状态。
使用 reset,使用超参数的当前值(get_params 的结果)运行 __init__。这将移除任何对象属性,除了:
超参数 = __init__ 的参数
包含双下划线的对象属性,即字符串”__”
类和对象方法,以及类属性也不受影响。
- 返回:
- 自身
类的实例重置为干净的初始化后状态,但保留当前的超参数值。
注释
等同于 sklearn.clone 但覆盖了 self。在调用 self.reset() 之后,self 的值等于 type(self)(**self.get_params(deep=False))
- save(path=None, serialization_format='pickle')[源代码]#
将序列化的自身保存到类字节对象或 (.zip) 文件中。
行为:如果
path
为 None,则返回内存中的序列化自身;如果path
是一个文件位置,则将自身存储在该位置作为一个 zip 文件。保存的文件是包含以下内容的zip文件:_metadata - 包含自身的类,即 type(self) _obj - 序列化的自身。此类使用默认的序列化(pickle)。
- 参数:
- 路径无或文件位置(字符串或路径)
如果为 None,则将 self 保存到内存中的对象;如果为文件位置,则将 self 保存到该文件位置。如果:
path=”estimator” 那么会在当前工作目录生成一个
estimator.zip
文件。path=”/home/stored/estimator” 那么estimator.zip
文件将会存储在/home/stored/
目录中。- serialization_format: str, default = “pickle”
用于序列化的模块。可用的选项是 “pickle” 和 “cloudpickle”。请注意,非默认格式可能需要安装其他软依赖项。
- 返回:
- 如果
path
是 None - 内存中序列化的自身 - 如果
path
是文件位置 - 带有文件引用的 ZipFile
- 如果
- set_config(**config_dict)[源代码]#
将配置标志设置为给定值。
- 参数:
- config_dictdict
配置名称 : 配置值对的字典。有效的配置、值及其含义如下所示:
- 显示str, “diagram” (默认), 或 “text”
jupyter 内核如何显示 self 的实例
“diagram” = html 盒子图表示
“text” = 字符串打印输出
- print_changed_onlybool, 默认=True
是否仅打印与默认值不同的自身参数(False),或者打印所有参数名称和值(False)。不嵌套,即仅影响自身,而不影响组件估计器。
- 警告str, “on” (默认), 或 “off”
是否引发警告,仅影响来自 sktime 的警告
“on” = 将引发来自 sktime 的警告
“off” = 不会从 sktime 引发警告
- 后端:并行str, 可选, 默认=”None”
在广播/矢量化时用于并行化的后端,可选之一
“None”: 按顺序执行循环,简单的列表推导
“loky”, “multiprocessing” 和 “threading”: 使用
joblib.Parallel
“joblib”:自定义和第三方
joblib
后端,例如spark
“dask”: 使用
dask
,需要在环境中安装dask
包
- backend:parallel:paramsdict, 可选, 默认={} (未传递参数)
传递给并行化后端的额外参数作为配置。有效键取决于
backend:parallel
的值:“None”: 没有额外参数,
backend_params
被忽略“loky”, “multiprocessing” 和 “threading”: 默认的
joblib
后端 任何有效的joblib.Parallel
键都可以在这里传递,例如n_jobs
,除了backend
直接由backend
控制。如果未传递n_jobs
,它将默认为-1
,其他参数将默认为joblib
的默认值。“joblib”: 自定义和第三方
joblib
后端,例如spark
。任何joblib.Parallel
的有效键都可以在这里传递,例如n_jobs
,在这种情况下,backend
必须作为backend_params
的一个键传递。如果未传递n_jobs
,它将默认为-1
,其他参数将默认为joblib
的默认值。“dask”: 任何
dask.compute
的有效键都可以传递,例如,scheduler
- 返回:
- 自身自我引用
注释
更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。
- set_params(**params)[源代码]#
设置此对象的参数。
该方法适用于简单估计器以及复合对象。参数键字符串
<component>__<parameter>
可用于复合对象,即包含其他对象的对象,以访问组件<component>
中的<parameter>
。如果这使得引用明确,例如没有两个组件的参数名称相同,则也可以使用不带<component>__
的字符串<parameter>
。- 参数:
- **参数dict
BaseObject 参数,键必须是
<组件>__<参数>
字符串。如果 get_params 键中唯一,__ 后缀可以别名为完整字符串。
- 返回:
- 自身引用自身(在参数设置之后)
- set_random_state(random_state=None, deep=True, self_policy='copy')[源代码]#
设置 random_state 伪随机种子参数为 self。
通过
estimator.get_params
查找名为random_state
的参数,并通过set_params
将其设置为从random_state
派生的整数。这些整数通过sample_dependent_seed
的链哈希采样得到,并保证种子随机生成器的伪随机独立性。根据
self_policy
应用于estimator
中的random_state
参数,并且仅当deep=True
时应用于剩余的组件估计器。注意:即使
self
没有random_state
,或者没有任何组件有random_state
参数,也会调用set_params
。因此,set_random_state
将重置任何scikit-base
估计器,即使那些没有random_state
参数的估计器。- 参数:
- random_stateint, RandomState 实例或 None, 默认=None
伪随机数生成器,用于控制随机整数的生成。传递整数以在多次函数调用中获得可重复的输出。
- 深度bool, 默认=True
是否在子估计器中设置随机状态。如果为 False,则仅设置
self
的random_state
参数(如果存在)。如果为 True,则还会在子估计器中设置random_state
参数。- self_policystr, 可选值为 {“copy”, “keep”, “new”}, 默认值为 “copy”
“复制”:
estimator.random_state
被设置为输入的random_state
“保持” :
estimator.random_state
保持不变“new” :
estimator.random_state
被设置为一个新的随机状态,
源自输入
random_state
,并且通常与它不同。
- 返回:
- 自身自我引用
- set_tags(**tag_dict)[源代码]#
将动态标签设置为给定值。
- 参数:
- **标签字典dict
标签名称:标签值对的字典。
- 返回:
- 自我
自我引用。
注释
通过在 tag_dict 中设置标签值,将对象状态更改为 self 中的动态标签。
- split(y: Series | DataFrame | ndarray | Index) Iterator[tuple[numpy.ndarray, numpy.ndarray]] [源代码]#
获取 y 的训练/测试分割的 iloc 引用。
- 参数:
- ypd.Index 或 sktime 兼容时间序列格式中的时间序列,
时间序列可以是任何 Series、Panel 或 Hierarchical mtype 格式的索引,或者是要分割的时间序列。如果是时间序列,则被视为等效的 pandas 类型容器的索引:pd.DataFrame、pd.Series、pd-multiindex 或 pd_multiindex_hier mtype。
- Yields:
- 训练1D np.ndarray of dtype int
训练窗口索引,iloc 引用 y 中的训练索引
- 测试1D np.ndarray of dtype int
测试窗口索引,iloc 引用 y 中的测试索引
- split_loc(y: Series | DataFrame | ndarray | Index) Iterator[tuple[pandas.core.indexes.base.Index, pandas.core.indexes.base.Index]] [源代码]#
获取 y 的训练/测试分割的 loc 引用。
- 参数:
- ypd.Index 或 sktime 兼容时间序列格式中的时间序列,
时间序列可以是任何 Series、Panel 或 Hierarchical mtype 格式的索引,或者是要分割的时间序列。如果是时间序列,则被视为等效的 pandas 类型容器的索引:pd.DataFrame、pd.Series、pd-multiindex 或 pd_multiindex_hier mtype。
- Yields:
- 训练pd.Index
训练窗口索引,y 中训练索引的 loc 引用
- 测试pd.Index
测试窗口索引,loc 引用以测试 y 中的索引
- split_series(y: Series | DataFrame | ndarray | Index) Iterator[tuple[pandas.core.series.Series, pandas.core.series.Series] | tuple[pandas.core.series.Series, pandas.core.series.Series, pandas.core.frame.DataFrame, pandas.core.frame.DataFrame]] [源代码]#
将 y 分割为训练和测试窗口。
- 参数:
- ypd.Index 或 sktime 兼容时间序列格式中的时间序列,
时间序列可以是任何 Series、Panel 或 Hierarchical mtype 格式的索引,或者是要分割的时间序列。如果是时间序列,则被视为等效的 pandas 类型容器的索引:pd.DataFrame、pd.Series、pd-multiindex 或 pd_multiindex_hier mtype。
- Yields:
- train : 与 y 相同 sktime mtype 的时间序列与相同 sktime mtype 的时间序列
拆分中的训练系列
- 测试 : 与 y 相同 sktime 类型的时序数据与相同 sktime mtype 的时间序列
test series in the split