VARMAX#
- class VARMAX(order=(1, 0), trend='c', error_cov_type='unstructured', measurement_error=False, enforce_stationarity=True, enforce_invertibility=True, trend_offset=1, start_params=None, transformed=True, includes_fixed=False, cov_type=None, cov_kwds=None, method='lbfgs', maxiter=50, full_output=1, disp=False, callback=None, return_params=False, optim_score=None, optim_complex_step=None, optim_hessian=None, flags=None, low_memory=False, dynamic=False, information_set='predicted', signal_only=False, suppress_warnings=False)[源代码][源代码]#
statsmodels 中的 VARMAX 预测模型
从
statsmodels.tsa.statespace.varmax
直接接口到VARMAX
。带有外生回归量的向量自回归移动平均模型 (VARMAX)
- 参数:
- 顺序可迭代对象
模型的 (p,q) 阶数,用于指定要使用的 AR 和 MA 参数的数量。
- 趋势str{‘n’,’c’,’t’,’ct’} 或可迭代对象, 可选
控制确定性趋势多项式 \(A(t)\) 的参数。可以指定为一个字符串,其中 ‘c’ 表示常数(即趋势多项式的零次项),’t’ 表示随时间的线性趋势,’ct’ 表示两者都有。也可以指定为一个可迭代对象,定义要包含的非零多项式指数,按递增顺序排列。例如,
[1,1,0,1]
表示 \(a + bt + ct^3\)。默认是常数趋势分量。- error_cov_type{‘对角线’, ‘非结构化’}, 可选
误差项的协方差矩阵结构,其中“unstructured”对矩阵没有任何限制,“diagonal”要求它是一个对角矩阵(不相关的误差)。默认是“unstructured”。
- 测量误差bool, 可选
是否假设内生观测值
endog
存在测量误差。默认值为 False。- enforce_stationaritybool, 可选
是否将AR参数转换以强制模型自回归部分的平稳性。默认为True。
- enforce_invertibilitybool, 可选
是否将MA参数转换以在模型的移动平均部分中强制执行可逆性。默认值为True。
- trend_offsetint, 可选
时间趋势值的起始偏移量。默认值为1,因此如果
trend='t'
,趋势等于1, 2, …, n_obs。通常仅在通过扩展先前数据集创建模型时设置。- start_params类似数组, 可选
对数似然最大化解决方案的初始猜测。如果为 None,则默认为 Model.start_params 提供的值。
- 转换后的bool, 可选
start_params 是否已经转换。默认为 True。
- includes_fixedbool, 可选
如果参数之前已经通过 fix_params 方法固定,此参数描述 start_params 是否也包括固定的参数,除了自由参数之外。默认是 False。
- cov_typestr, 可选
cov_type
关键字控制计算参数估计协方差矩阵的方法。可以是以下之一:‘opg’ 用于梯度估计的外积
- ‘oim’ 用于观测信息矩阵估计器,计算
使用Harvey(1989)的方法
- ‘approx’ 用于观测信息矩阵估计器,
使用Hessian矩阵的数值近似计算。
- ‘robust’ 用于近似(准最大似然)协方差
即使在存在某些错误指定的情况下,矩阵也可能是有效的。中间计算使用 ‘oim’ 方法。
- ‘robust_approx’ 与 ‘robust’ 相同,除了
中间计算使用 ‘approx’ 方法。
‘none’ 表示不进行协方差矩阵计算。
默认值为 ‘opg’,除非使用内存保护以避免为每个观测值计算对数似然值,在这种情况下,默认值为 ‘approx’。
- cov_kwds字典或无,可选
影响协方差矩阵计算的参数字典。opg, oim, approx, robust, robust_approx
- ‘approx_complex_step’bool, 可选 - 如果为 True,数值
近似值使用复步法计算。如果为 False,则使用有限差分法计算数值近似值。默认为 True。
- ‘approx_centered’bool, 可选 - 如果为 True,数值
使用有限差分方法计算的近似值使用中心近似。默认为 False。
- 方法str, 可选
method
决定了从scipy.optimize
中使用哪个求解器,可以从以下字符串中选择:‘newton’ 用于牛顿-拉夫森方法
‘nm’ 表示 Nelder-Mead
‘bfgs’ 用于 Broyden-Fletcher-Goldfarb-Shanno (BFGS)
‘lbfgs’ 用于带可选边界约束的有限内存BFGS
‘powell’ 用于修正的鲍威尔方法
‘cg’ 代表共轭梯度
‘ncg’ 表示牛顿共轭梯度
‘basinhopping’ 用于全局盆地跳跃求解器
fit
中的显式参数会传递给求解器,但 basin-hopping 求解器除外。每个求解器都有几个可选参数,这些参数在不同的求解器之间并不相同。请参阅下面的注释部分(或 scipy.optimize)以获取可用参数以及 basin-hopping 求解器支持的显式参数列表。- maxiterint, 可选
要执行的最大迭代次数。
- 完整输出bool, 可选
设置为 True 以在 Results 对象的 mle_retvals 属性中包含所有可用的输出。输出取决于求解器。更多信息请参见 LikelihoodModelResults 注释部分。
- dispbool, 可选
设置为 True 以打印收敛消息。
- 回调可调用回调函数(xk),可选
在每次迭代后调用,作为回调函数 callback(xk),其中 xk 是当前的参数向量。
- return_paramsbool, 可选
是否只返回最大化参数的数组。默认是 False。
- optim_score{‘harvey’, ‘approx’} 或 None, 可选
计算得分向量的方法。’harvey’ 使用 Harvey (1989) 的方法,’approx’ 根据
optim_complex_step
的值使用有限差分或复步微分,None 使用优化器的内置梯度近似。默认是 None。此关键字仅在使用得分的情况下与优化方法相关。- optim_complex_stepbool, 可选
在近似得分时是否使用复杂的步长微分;如果为 False,则使用有限差分近似。默认值为 True。此关键字仅在
optim_score
设置为 ‘harvey’ 或 ‘approx’ 时相关。- optim_hessian{‘opg’,’oim’,’approx’}, 可选
Hessian 数值近似的方法。’opg’ 使用梯度的外积,’oim’ 使用 Harvey (1989) 的信息矩阵公式,’approx’ 使用数值近似。此关键字仅在与优化方法使用 Hessian 矩阵相关时有效。
- 低内存bool, 可选
如果设置为 True,将应用技术来大幅减少内存使用。如果使用此选项,结果对象的某些功能将不可用(包括平滑结果和样本内预测),尽管样本外预测是可能的。默认值为 False。
- 动态bool, int, str, 或 datetime, 可选
相对于
start
的整数偏移量,用于开始动态预测。也可以是一个需要解析的绝对日期字符串或一个 datetime 类型(这些不会被解释为偏移量)。在此观察之前,将使用真实的内生值进行预测;从该观察开始并持续到预测结束,将使用预测的内生值。- 信息集str, 可选
用于条件化每个预测的信息集。默认是“predicted”,它计算基于截至t-1期的观测数据的条件下的t期值的预测;这些是一步提前预测,与典型的``fittedvalues``结果属性相对应。其他选项包括“filtered”,它计算基于截至t期的观测数据的条件下的t期值的预测,以及“smoothed”,它计算基于整个数据集(包括未来的观测值t+1,t+2,…)的条件下的t期值的预测。
- 仅信号bool, 可选
是否仅计算观测方程中“信号”分量的预测值。默认为False。例如,时间不变模型的观测方程为 \(y_t = d + Z \alpha_t + \varepsilon_t\),而“信号”分量为 \(Z \alpha_t\)。如果此参数设置为True,则将返回“信号” \(Z \alpha_t\) 的预测值。否则,默认返回 \(y_t\) 的预测值。
- 抑制警告bool, 可选
在 statsmodels 内部可能会抛出许多警告。如果
suppress_warnings
为 True,所有这些警告都将被抑制。默认值为 False。
- 属性:
注释
通常,VARMAX 模型是这样指定的(例如参见 [1] 的第18章): .. math:
y_t = A(t) + A_1 y_{t-1} + \dots + A_p y_{t-p} + B x_t + \epsilon_t + M_1 \epsilon_{t-1} + \dots M_q \epsilon_{t-q}
其中 \(\epsilon_t \sim N(0, \Omega)\),且 \(y_t\) 是一个
k_endog x 1
向量。此外,该模型还允许考虑变量测量误差的情况。需要注意的是,在完整的 VARMA(p,q) 情况下,存在一个基本的识别问题,即系数矩阵 \(\{A_i, M_j\}\) 通常不是唯一的,这意味着对于给定的时间序列过程,可能存在多组矩阵等效地表示它。更多信息请参见 [1] 的第12章。尽管此类可用于估计 VARMA(p,q) 模型,但会发出警告以提醒用户,在这种情况下尚未采取确保识别的步骤。参考文献
示例
>>> from sktime.forecasting.varmax import VARMAX >>> from sktime.datasets import load_macroeconomic >>> from sktime.split import temporal_train_test_split >>> y = load_macroeconomic() >>> forecaster = VARMAX(suppress_warnings=True) >>> forecaster.fit(y[['realgdp', 'unemp']]) VARMAX(...) >>> y_pred = forecaster.predict(fh=[1,4,12])
方法
检查估计器是否已被拟合。
clone
()获取具有相同超参数的对象副本。
clone_tags
(estimator[, tag_names])从另一个估计器克隆标签作为动态覆盖。
create_test_instance
([parameter_set])如果可能,构造 Estimator 实例。
create_test_instances_and_names
([parameter_set])创建所有测试实例的列表及其名称列表。
fit
(y[, X, fh])将预测器拟合到训练数据。
fit_predict
(y[, X, fh, X_pred])在未来的时间范围内拟合和预测时间序列。
get_class_tag
(tag_name[, tag_value_default])获取类标签的值。
从类及其所有父类中获取类标签。
获取 self 的配置标志
get_fitted_params
([deep])获取拟合参数。
获取对象的参数默认值。
get_param_names
([sort])获取对象的参数名称。
get_params
([deep])获取此对象的参数值字典。
get_tag
(tag_name[, tag_value_default, ...])从估计器类获取标签值并动态覆盖标签。
get_tags
()从估计器类获取标签和动态标签覆盖。
get_test_params
([parameter_set])返回估计器的测试参数设置。
检查对象是否由其他 BaseObjects 组成。
load_from_path
(serial)从文件位置加载对象。
load_from_serial
(serial)从序列化的内存容器中加载对象。
predict
([fh, X])预测未来时间范围内的时序数据。
predict_interval
([fh, X, coverage])计算/返回预测区间预测。
predict_proba
([fh, X, marginal])计算/返回完全概率预测。
predict_quantiles
([fh, X, alpha])计算/返回分位数预测。
predict_residuals
([y, X])返回时间序列预测的残差。
predict_var
([fh, X, cov])计算/返回方差预测。
reset
()将对象重置为初始化后的干净状态。
save
([path, serialization_format])将序列化的自身保存到类字节对象或 (.zip) 文件中。
score
(y[, X, fh])使用MAPE(非对称)对地面实况进行分数预测。
set_config
(**config_dict)将配置标志设置为给定值。
set_params
(**params)设置此对象的参数。
set_random_state
([random_state, deep, ...])为 self 设置 random_state 伪随机种子参数。
set_tags
(**tag_dict)将动态标签设置为给定值。
update
(y[, X, update_params])更新截止值,并可选择更新拟合参数。
update_predict
(y[, cv, X, update_params, ...])在测试集上迭代地进行预测并更新模型。
update_predict_single
([y, fh, X, update_params])用新数据更新模型并进行预测。
- classmethod get_test_params(parameter_set='default')[源代码][源代码]#
返回估计器的测试参数设置。
- 参数:
- 参数集str, 默认值=”default”
要返回的测试参数集的名称,用于测试中。如果没有为某个值定义特殊参数,将返回
"default"
集。目前没有为预测器保留的值。
- 返回:
- 参数字典或字典列表,默认 = {}
创建类的测试实例的参数 每个字典都是用于构造一个“有趣的”测试实例的参数,即
MyClass(**params)
或MyClass(**params[i])
创建一个有效的测试实例。create_test_instance
使用params
中的第一个(或唯一一个)字典
- clone()[源代码]#
获取具有相同超参数的对象副本。
克隆是一个在初始化后状态下的不同对象,没有共享引用。此函数等同于返回 self 的 sklearn.clone。
- 引发:
- 如果克隆不符合规范,由于
__init__
存在错误,将引发 RuntimeError。
- 如果克隆不符合规范,由于
注释
如果成功,值等于
type(self)(**self.get_params(deep=False))
。
- clone_tags(estimator, tag_names=None)[源代码]#
从另一个估计器克隆标签作为动态覆盖。
- 参数:
- 估计器继承自
BaseEstimator
的估计器 - 标签名称str 或 str 列表,默认 = None
要克隆的标签名称。如果为 None,则使用估计器中的所有标签作为 tag_names。
- 估计器继承自
- 返回:
- 自我
自我引用。
注释
通过在 tag_set 中设置来自估计器的标签值,改变对象状态,将其作为动态标签存储在 self 中。
- classmethod create_test_instance(parameter_set='default')[源代码]#
如果可能,构造 Estimator 实例。
- 参数:
- 参数集str, 默认值=”default”
要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。
- 返回:
- 实例使用默认参数的类实例
注释
get_test_params 可以返回字典或字典列表。此函数取 get_test_params 返回的第一个或单个字典,并用该字典构建对象。
- classmethod create_test_instances_and_names(parameter_set='default')[源代码]#
创建所有测试实例的列表及其名称列表。
- 参数:
- 参数集str, 默认值=”default”
要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。
- 返回:
- objscls 的实例列表
第 i 个实例是 cls(**cls.get_test_params()[i])
- 名称list of str, 与 objs 长度相同
第 i 个元素是测试中 obj 的第 i 个实例的名称,约定为 {cls.__name__}-{i},如果存在多个实例,否则为 {cls.__name__}。
- property cutoff[源代码]#
截止 = “当前时间” 预测器的状态。
- 返回:
- 截止pandas 兼容的索引元素,或 None
pandas 兼容的索引元素,如果已设置截止值;否则为 None
- fit(y, X=None, fh=None)[源代码]#
将预测器拟合到训练数据。
- 状态变化:
将状态更改为“已拟合”。
写给自己:
设置以“_”结尾的拟合模型属性,拟合属性可以通过
get_fitted_params
进行检查。将
self.is_fitted
标志设置为True
。将
self.cutoff
设置为在y
中看到的最后一个索引。如果传递了
fh
,则将其存储到self.fh
中。
- 参数:
- y : 以
sktime
兼容数据容器格式表示的时间序列。时间序列 要拟合预测器的时间序列。
sktime
中的个别数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype。Series
类型 = 单个时间序列,普通预测。pd.DataFrame
、pd.Series
或 ``np.ndarray``(1D 或 2D)Panel
类型 = 时间序列集合,全局/面板预测。pd.DataFrame
带有 2 级行MultiIndex
(实例, 时间)
,3D np.ndarray
(实例, 变量, 时间)
,list
类型的Series
pd.DataFrame
Hierarchical
类型 = 分层集合,用于分层预测。pd.DataFrame
带有3个或更多级别的行MultiIndex
(hierarchy_1, ..., hierarchy_n, time)
有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程
examples/01_forecasting.ipynb
- fhint, list, np.array 或 ForecastingHorizon, 可选 (默认=None)
预测时间范围编码了要预测的时间戳。如果
self.get_tag("requires-fh-in-fit")
为True
,则必须在fit
中传递,不可选- X :
sktime
兼容格式的时间序列,可选(默认=None)。时间序列 用于拟合模型的外生时间序列。应与
y
具有相同的 类型`(``Series`、Panel
或Hierarchical
)。如果self.get_tag("X-y-must-have-same-index")
,则X.index
必须包含y.index
。
- y : 以
- 返回:
- self自我引用。
- fit_predict(y, X=None, fh=None, X_pred=None)[源代码]#
在未来的时间范围内拟合和预测时间序列。
与
fit(y, X, fh).predict(X_pred)
相同。如果未传递X_pred
,则与fit(y, fh, X).predict(X)
相同。- 状态变化:
将状态更改为“已拟合”。
写给自己:
设置以“_”结尾的拟合模型属性,拟合属性可以通过
get_fitted_params
进行检查。将
self.is_fitted
标志设置为True
。将
self.cutoff
设置为在y
中看到的最后一个索引。将
fh
存储到self.fh
中。
- 参数:
- ysktime 兼容数据容器格式中的时间序列
要拟合预测器的时间序列。
sktime
中的个别数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype。Series
类型 = 单个时间序列,普通预测。pd.DataFrame
、pd.Series
或 ``np.ndarray``(1D 或 2D)Panel
类型 = 时间序列集合,全局/面板预测。pd.DataFrame
带有 2 级行MultiIndex
(实例, 时间)
,3D np.ndarray
(实例, 变量, 时间)
,list
类型的Series
pd.DataFrame
Hierarchical
类型 = 分层集合,用于分层预测。pd.DataFrame
带有3个或更多级别的行MultiIndex
(hierarchy_1, ..., hierarchy_n, time)
有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程
examples/01_forecasting.ipynb
- fh : int, list, np.array 或
ForecastingHorizon
(不可选)int, list, np.array 或 预测范围编码了要预测的时间戳。
- X :
sktime
兼容格式的时间序列,可选(默认=None)。时间序列 用于拟合模型的外生时间序列。应与
y
具有相同的 类型`(``Series`、Panel
或Hierarchical
)。如果self.get_tag("X-y-must-have-same-index")
,则X.index
必须包含y.index
。- X_predsktime 兼容格式的时间序列,可选(默认=None)
用于预测的外生时间序列。如果传递,将在预测中使用,而不是X。应与``fit``中的``y``具有相同的类型(
Series
、Panel``或``Hierarchical
)。如果``self.get_tag(“X-y-must-have-same-index”)``,则``X.index``必须包含``fh``索引引用。
- 返回:
- y_predsktime 兼容数据容器格式中的时间序列
在
fh
处的点预测,索引与fh
相同。y_pred
与最近传递的y
具有相同类型:Series
、Panel
、Hierarchical
科学类型,格式相同(见上文)
- classmethod get_class_tag(tag_name, tag_value_default=None)[源代码]#
获取类标签的值。
不返回在实例上定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。
- 参数:
- 标签名称str
标签值的名称。
- tag_value_default任何
如果未找到标签,则使用默认/回退值。
- 返回:
- 标签值
在 self 中 tag_name 标签的值。如果未找到,则返回 tag_value_default。
- classmethod get_class_tags()[源代码]#
从类及其所有父类中获取类标签。
从 _tags 类属性中检索标签:值对。不返回从实例中定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。
- 返回:
- collected_tagsdict
类标签名称:标签值对的字典。通过嵌套继承从 _tags 类属性中收集。
- get_config()[源代码]#
获取 self 的配置标志
- 返回:
- config_dictdict
配置名称 : 配置值对的字典。从 _config 类属性通过嵌套继承收集,然后是 _config_dynamic 对象属性的任何覆盖和新标签。
- get_fitted_params(deep=True)[源代码]#
获取拟合参数。
- 状态要求:
需要状态为“已拟合”。
- 参数:
- 深度bool, 默认=True
是否返回组件的拟合参数。
如果为 True,将返回此对象的参数名称 : 值的字典,包括可拟合组件的拟合参数(= BaseEstimator 值的参数)。
如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的拟合参数。
- 返回:
- fitted_params带有字符串键的字典
拟合参数的字典,paramname : paramvalue 键值对包括:
always: 该对象的所有拟合参数,通过
get_param_names
获取的值是该对象对应键的拟合参数值。如果
deep=True
,还将包含组件参数的键/值对,组件参数被索引为[componentname]__[paramname]
,所有componentname
的参数都以其值作为paramname
出现。如果
deep=True
,还包含任意层级的组件递归,例如[组件名称]__[子组件名称]__[参数名称]
等。
- classmethod get_param_defaults()[源代码]#
获取对象的参数默认值。
- 返回:
- default_dict: dict[str, Any]
键是 cls 中在 __init__ 中定义了默认值的所有参数,值是 __init__ 中定义的默认值。
- classmethod get_param_names(sort=True)[源代码]#
获取对象的参数名称。
- 参数:
- 排序bool, 默认=True
是否按字母顺序返回参数名称(True),或者按它们在类
__init__
中出现的顺序返回(False)。
- 返回:
- param_names: list[str]
cls 的参数名称列表。如果
sort=False
,则按它们在类__init__
中出现的顺序排列。如果sort=True
,则按字母顺序排列。
- get_params(deep=True)[源代码]#
获取此对象的参数值字典。
- 参数:
- 深度bool, 默认=True
是否返回组件的参数。
如果为真,将返回此对象的参数名称 : 值的字典,包括组件的参数(= BaseObject 值的参数)。
如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的参数。
- 返回:
- 参数带有字符串键的字典
参数的字典,paramname : paramvalue 键值对包括:
总是:此对象的所有参数,通过 get_param_names 获取的值是该键的参数值,此对象的值始终与构造时传递的值相同。
如果 deep=True,还包含组件参数的键/值对,组件的参数被索引为 [componentname]__[paramname],componentname 的所有参数都以其值作为 paramname 出现。
如果 deep=True,还包含任意级别的组件递归,例如,[componentname]__[componentcomponentname]__[paramname] 等。
- get_tag(tag_name, tag_value_default=None, raise_error=True)[源代码]#
从估计器类获取标签值并动态覆盖标签。
- 参数:
- 标签名称str
要检索的标签名称
- tag_value_default任何类型,可选;默认=None
如果未找到标签,则使用默认/回退值
- raise_error布尔
当找不到标签时是否引发 ValueError
- 返回:
- 标签值任何
在 self 中 tag_name 标签的值。如果未找到,如果 raise_error 为 True,则返回错误,否则返回 tag_value_default。
- 引发:
- 如果 raise_error 为 True,即如果 tag_name 不在其中,则引发 ValueError。
- self.get_tags().keys()
- get_tags()[源代码]#
从估计器类获取标签和动态标签覆盖。
- 返回:
- collected_tagsdict
标签名称 : 标签值对的字典。从 _tags 类属性通过嵌套继承收集,然后是 _tags_dynamic 对象属性的任何覆盖和新标签。
- is_composite()[源代码]#
检查对象是否由其他 BaseObjects 组成。
复合对象是一个包含对象的对象,作为参数。在实例上调用,因为这可能因实例而异。
- 返回:
- composite: bool
一个对象是否具有任何值为 BaseObjects 的参数。
- classmethod load_from_path(serial)[源代码]#
从文件位置加载对象。
- 参数:
- 串行ZipFile(path).open(“object”) 的结果
- 返回:
- 反序列化自身,结果输出到
path
,通过cls.save(path)
- 反序列化自身,结果输出到
- classmethod load_from_serial(serial)[源代码]#
从序列化的内存容器中加载对象。
- 参数:
- serial :
cls.save(None)
输出的第一个元素输出结果的第一个元素
- serial :
- 返回:
- 反序列化自身,结果输出为
serial
,来自cls.save(None)
- 反序列化自身,结果输出为
- predict(fh=None, X=None)[源代码]#
预测未来时间范围内的时序数据。
- 状态要求:
需要状态为“已拟合”,即
self.is_fitted=True
。
self 中的访问:
以”_”结尾的拟合模型属性
self.cutoff
,self.is_fitted
- 写给自己:
如果传递了
fh
且之前未传递过,则将其存储到self.fh
中。
- 参数:
- fh : int, list, np.array 或
ForecastingHorizon
,可选(默认=None)int, list, np.array 或 预测时间范围编码了要预测的时间戳。如果已经在
fit
中传递了,则不应再传递。如果在 fit 中未传递,则必须传递,不是可选的。- X :
sktime
兼容格式的时间序列,可选(默认=None)时间序列 用于预测的外生时间序列。应与``fit``中的``y``具有相同的科学类型(
Series
、Panel``或``Hierarchical
)。如果``self.get_tag(“X-y-must-have-same-index”)``,则``X.index``必须包含``fh``索引引用。
- fh : int, list, np.array 或
- 返回:
- y_predsktime 兼容数据容器格式中的时间序列
在
fh
处的点预测,索引与fh
相同。y_pred
与最近传递的y
具有相同类型:Series
、Panel
、Hierarchical
科学类型,格式相同(见上文)
- predict_interval(fh=None, X=None, coverage=0.9)[源代码]#
计算/返回预测区间预测。
如果
coverage
是可迭代的,将计算多个区间。- 状态要求:
需要状态为“已拟合”,即
self.is_fitted=True
。
self 中的访问:
以”_”结尾的拟合模型属性
self.cutoff
,self.is_fitted
- 写给自己:
如果传递了
fh
且之前未传递过,则将其存储到self.fh
中。
- 参数:
- fh : int, list, np.array 或
ForecastingHorizon
,可选(默认=None)int, list, np.array 或 预测时间范围编码了要预测的时间戳。如果已经在
fit
中传递了,则不应再传递。如果在 fit 中未传递,则必须传递,不是可选的。- X :
sktime
兼容格式的时间序列,可选(默认=None)时间序列 用于预测的外生时间序列。应与``fit``中的``y``具有相同的科学类型(
Series
、Panel``或``Hierarchical
)。如果``self.get_tag(“X-y-must-have-same-index”)``,则``X.index``必须包含``fh``索引引用。- 覆盖率浮点数或唯一值的浮点数列表,可选(默认值=0.90)
预测区间的名义覆盖率
- fh : int, list, np.array 或
- 返回:
- pred_intpd.DataFrame
- 列具有多重索引:第一级是来自拟合中 y 的变量名称,
- 计算区间所对应的二级覆盖分数。
按照输入
coverage
中的相同顺序。
第三级是字符串 “lower” 或 “upper”,用于下限/上限区间。
- 行索引是 fh,附加(上层)级别等于实例级别,
从 y 中可以看出,如果 y 在拟合中是面板或分层的。
- 条目是下限/上限区间端的预测,
对于列索引中的变量,在第二列索引的名义覆盖率下,根据第三列索引的上下限,对于行索引。上限/下限区间端点预测等价于在覆盖率c下的分位数预测,其中alpha = 0.5 - c/2, 0.5 + c/2。
- predict_proba(fh=None, X=None, marginal=True)[源代码]#
计算/返回完全概率预测。
注意:目前仅对 Series(非面板,非分层)y 实现。
- 状态要求:
需要状态为“已拟合”,即
self.is_fitted=True
。
self 中的访问:
以”_”结尾的拟合模型属性
self.cutoff
,self.is_fitted
- 写给自己:
如果传递了
fh
且之前未传递过,则将其存储到self.fh
中。
- 参数:
- fh : int, list, np.array 或
ForecastingHorizon
,可选(默认=None)int, list, np.array 或 预测时间范围编码了要预测的时间戳。如果已经在
fit
中传递了,则不应再传递。如果在 fit 中未传递,则必须传递,不是可选的。- X :
sktime
兼容格式的时间序列,可选(默认=None)时间序列 用于预测的外生时间序列。应与``fit``中的``y``具有相同的科学类型(
Series
、Panel``或``Hierarchical
)。如果``self.get_tag(“X-y-must-have-same-index”)``,则``X.index``必须包含``fh``索引引用。- 边缘bool, 可选 (默认=True)
返回的分布是否按时间索引的边际分布
- fh : int, list, np.array 或
- 返回:
- pred_distsktime 基础分布
如果 marginal=True,则为预测分布;如果 marginal=False 且由方法实现,则为按时间点的边际分布;如果 marginal=False 且由方法实现,则为联合分布。
- predict_quantiles(fh=None, X=None, alpha=None)[源代码]#
计算/返回分位数预测。
如果
alpha
是可迭代的,将计算多个分位数。- 状态要求:
需要状态为“已拟合”,即
self.is_fitted=True
。
self 中的访问:
以”_”结尾的拟合模型属性
self.cutoff
,self.is_fitted
- 写给自己:
如果传递了
fh
且之前未传递过,则将其存储到self.fh
中。
- 参数:
- fh : int, list, np.array 或
ForecastingHorizon
,可选(默认=None)int, list, np.array 或 预测时间范围编码了要预测的时间戳。如果已经在
fit
中传递了,则不应再传递。如果在 fit 中未传递,则必须传递,不是可选的。- X :
sktime
兼容格式的时间序列,可选(默认=None)时间序列 用于预测的外生时间序列。应与``fit``中的``y``具有相同的科学类型(
Series
、Panel``或``Hierarchical
)。如果``self.get_tag(“X-y-must-have-same-index”)``,则``X.index``必须包含``fh``索引引用。- alpha浮点数或唯一值的浮点数列表,可选(默认值=[0.05, 0.95])
概率或概率列表,用于计算分位数预测。
- fh : int, list, np.array 或
- 返回:
- 分位数pd.DataFrame
- 列具有多重索引:第一级是来自拟合中 y 的变量名称,
第二级是传递给函数的 alpha 值。
- 行索引是 fh,附加(上层)级别等于实例级别,
从 y 中可以看出,如果 y 在拟合中是面板或分层的。
- 条目是分位数预测,对于列索引中的变量。
在第二列索引的分位数概率处,对应于行索引。
- predict_residuals(y=None, X=None)[源代码]#
返回时间序列预测的残差。
将在 y.index 处为预测计算残差。
如果必须在拟合中传递 fh,则必须与 y.index 一致。如果 y 是 np.ndarray,并且没有在拟合中传递 fh,则将在 fh 为 range(len(y.shape[0])) 时计算残差。
- 状态要求:
需要状态为“已拟合”。如果已设置 fh,则必须对应于 y 的索引(pandas 或整数)
- self 中的访问:
以“_”结尾的拟合模型属性。self.cutoff, self._is_fitted
- 写给自己:
无。
- 参数:
- ysktime 兼容数据容器格式中的时间序列
带有地面真值观测的时间序列,用于计算残差。必须与预测返回的类型、维度及索引相同。
如果为 None,则使用迄今为止看到的 y(self._y),特别是:
如果前面调用了一次拟合,那么会产生样本内残差
如果拟合需要
fh
,它必须指向拟合中 y 的索引
- Xsktime 兼容格式的时间序列,可选(默认=None)
用于更新和预测的外生时间序列 应与
fit
中的y
具有相同的科学类型(Series
、Panel
或Hierarchical
)。如果self.get_tag("X-y-must-have-same-index")
,则X.index
必须包含fh
索引引用和y.index
。
- 返回:
- y_res : 以
sktime
兼容数据容器格式表示的时间序列时间序列 在
fh
处的预测残差,具有与fh
相同的索引。y_res
与最近传递的y
具有相同类型:Series
、Panel
、Hierarchical
科学类型,相同格式(见上文)
- y_res : 以
- predict_var(fh=None, X=None, cov=False)[源代码]#
计算/返回方差预测。
- 状态要求:
需要状态为“已拟合”,即
self.is_fitted=True
。
self 中的访问:
以”_”结尾的拟合模型属性
self.cutoff
,self.is_fitted
- 写给自己:
如果传递了
fh
且之前未传递过,则将其存储到self.fh
中。
- 参数:
- fh : int, list, np.array 或
ForecastingHorizon
,可选(默认=None)int, list, np.array 或 预测时间范围编码了要预测的时间戳。如果已经在
fit
中传递了,则不应再传递。如果在 fit 中未传递,则必须传递,不是可选的。- X :
sktime
兼容格式的时间序列,可选(默认=None)时间序列 用于预测的外生时间序列。应与``fit``中的``y``具有相同的科学类型(
Series
、Panel``或``Hierarchical
)。如果``self.get_tag(“X-y-must-have-same-index”)``,则``X.index``必须包含``fh``索引引用。- covbool, 可选 (默认=False)
如果为 True,则计算协方差矩阵预测。如果为 False,则计算边际方差预测。
- fh : int, list, np.array 或
- 返回:
- pred_var : pd.DataFrame, 格式取决于
cov
变量pd.DataFrame,格式依赖于 - 如果 cov=False:
- 列名与在
fit
/update
中传递的y
完全相同。 对于无名称的格式,列索引将是一个 RangeIndex。
- 行索引是 fh,附加级别等于实例级别,
从 y 中可以看出,如果 y 在拟合中是面板或分层的。
条目是变异预测,针对列索引中的变量。给定变量和fh索引的变异预测是一种预测
给定观测数据,计算该变量和索引的方差。
- 列名与在
- 如果 cov=True:
- 列索引是一个多重索引:第一级是变量名称(如上所示)
2级是fh。
- 行索引是 fh,附加级别等于实例级别,
从 y 中可以看出,如果 y 在拟合中是面板或分层的。
- 条目是(共)变异预测,对于列索引中的变量,并且
行和列中时间索引之间的协方差。
注意:不同变量之间不会返回协方差预测。
- pred_var : pd.DataFrame, 格式取决于
- reset()[源代码]#
将对象重置为初始化后的干净状态。
使用 reset,使用超参数的当前值(get_params 的结果)运行 __init__。这将移除任何对象属性,除了:
超参数 = __init__ 的参数
包含双下划线的对象属性,即字符串”__”
类和对象方法,以及类属性也不受影响。
- 返回:
- 自身
类的实例重置为干净的初始化后状态,但保留当前的超参数值。
注释
等同于 sklearn.clone 但覆盖 self。在调用 self.reset() 后,self 的值等于 type(self)(**self.get_params(deep=False))
- save(path=None, serialization_format='pickle')[源代码]#
将序列化的自身保存到类字节对象或 (.zip) 文件中。
行为:如果
path
是 None,则返回内存中的序列化自身;如果path
是一个文件位置,则将自身存储在该位置作为一个 zip 文件。保存的文件是包含以下内容的zip文件:_metadata - 包含自身的类,即 type(self) _obj - 序列化的自身。此类使用默认的序列化(pickle)。
- 参数:
- 路径无或文件位置(字符串或路径)
如果为 None,则将 self 保存到内存对象中;如果为文件位置,则将 self 保存到该文件位置。如果:
path=”estimator” 则会在当前工作目录(cwd)生成一个名为
estimator.zip
的压缩文件。path=”/home/stored/estimator” 则会在/home/stored/
目录下存储一个名为estimator.zip
的压缩文件。- serialization_format: str, default = “pickle”
用于序列化的模块。可用的选项有“pickle”和“cloudpickle”。请注意,非默认格式可能需要安装其他软依赖项。
- 返回:
- 如果
path
是 None - 内存中序列化的自身 - 如果
path
是文件位置 - 带有文件引用的 ZipFile
- 如果
- score(y, X=None, fh=None)[源代码]#
使用MAPE(非对称)对地面实况进行分数预测。
- 参数:
- ypd.Series, pd.DataFrame, 或 np.ndarray (1D 或 2D)
时间序列评分
- fhint, list, array-like 或 ForecastingHorizon, 可选 (默认=None)
预测者通过提前的步骤来预测未来的视野。
- Xpd.DataFrame,或 2D np.array,可选(默认=None)
外生时间序列评分,如果 self.get_tag(“X-y-must-have-same-index”),则 X.index 必须包含 y.index
- 返回:
- 分数浮动
self.predict(fh, X) 相对于 y_test 的 MAPE 损失。
- set_config(**config_dict)[源代码]#
将配置标志设置为给定值。
- 参数:
- config_dictdict
配置名称 : 配置值对字典。有效的配置、值及其含义如下所示:
- 显示str, “diagram” (默认), 或 “text”
jupyter 内核如何显示实例
“diagram” = html 盒子图表示
“text” = 字符串打印输出
- print_changed_onlybool, 默认=True
是否仅打印与默认值不同的自身参数(False),或打印所有参数名称和值(False)。不嵌套,即仅影响自身,不影响组件估计器。
- 警告str, “on” (默认), 或 “off”
是否引发警告,仅影响来自 sktime 的警告
“on” = 将引发来自 sktime 的警告
“off” = 不会从 sktime 引发警告
- 后端:并行str, 可选, 默认=”None”
在广播/矢量化时用于并行化的后端,是以下之一
“None”: 按顺序执行循环,简单的列表推导
“loky”、“multiprocessing” 和 “threading”:使用
joblib.Parallel
“joblib”:自定义和第三方
joblib
后端,例如,spark
“dask”: 使用
dask
,需要在环境中安装dask
包
- backend:parallel:paramsdict, 可选, 默认={} (未传递参数)
传递给并行化后端的额外参数作为配置。有效键取决于
backend:parallel
的值:“None”: 没有额外参数,
backend_params
被忽略“loky”, “multiprocessing” 和 “threading”: 默认的
joblib
后端 任何有效的joblib.Parallel
键都可以在这里传递,例如n_jobs
,除了backend
直接由backend
控制。如果未传递n_jobs
,它将默认为-1
,其他参数将默认为joblib
的默认值。“joblib”: 自定义和第三方
joblib
后端,例如spark
。任何joblib.Parallel
的有效键都可以在这里传递,例如n_jobs
,在这种情况下,backend
必须作为backend_params
的键传递。如果未传递n_jobs
,它将默认为-1
,其他参数将默认为joblib
的默认值。dask
: 任何dask.compute
的有效键都可以传递,例如scheduler
- 记住数据bool, 默认=True
是否在 fit 中存储 self._X 和 self._y,并在 update 中更新。如果为 True,则存储并更新 self._X 和 self._y。如果为 False,则不存储和更新 self._X 和 self._y。这在使用 save 时减少了序列化的大小,但 update 将默认执行“什么都不做”而不是“重新拟合所有已见数据”。
- 返回:
- self自我引用。
注释
更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。
- set_params(**params)[源代码]#
设置此对象的参数。
该方法适用于简单的估计器以及复合对象。参数键字符串
<component>__<parameter>
可用于复合对象,即包含其他对象的对象,以访问组件<component>
中的<parameter>
。如果这使得引用明确,例如没有两个组件的参数名称是<parameter>
,则也可以使用不带<component>__
的字符串<parameter>
。- 参数:
- **参数dict
BaseObject 参数,键必须是
<组件>__<参数>
字符串。如果 __ 后缀在 get_params 键中是唯一的,则可以别名为完整字符串。
- 返回:
- self引用自身(在参数设置之后)
- set_random_state(random_state=None, deep=True, self_policy='copy')[源代码]#
为 self 设置 random_state 伪随机种子参数。
通过
estimator.get_params
查找名为random_state
的参数,并通过set_params
将它们设置为由random_state
派生的整数。这些整数通过sample_dependent_seed
的链式哈希采样得到,并保证种子随机生成器的伪随机独立性。根据
self_policy
应用于estimator
中的random_state
参数,并且仅当deep=True
时应用于剩余的组件估计器。注意:即使
self
没有random_state
,或者没有任何组件有random_state
参数,也会调用set_params
。因此,set_random_state
将重置任何scikit-base
估计器,即使它们没有random_state
参数。- 参数:
- random_stateint, RandomState 实例或 None, 默认=None
伪随机数生成器,用于控制随机整数的生成。传递 int 以在多次函数调用中获得可重复的输出。
- 深度bool, 默认=True
是否在子估计器中设置随机状态。如果为 False,则仅设置
self
的random_state
参数(如果存在)。如果为 True,则还会在子估计器中设置random_state
参数。- self_policystr, 可选值为 {“copy”, “keep”, “new”}, 默认值为 “copy”
“复制” :
estimator.random_state
被设置为输入random_state
“保持” :
estimator.random_state
保持不变“new” :
estimator.random_state
被设置为一个新随机状态,
源自输入
random_state
,并且通常与它不同
- 返回:
- self自我引用
- set_tags(**tag_dict)[源代码]#
将动态标签设置为给定值。
- 参数:
- **标签字典dict
标签名称:标签值对的字典。
- 返回:
- 自我
自我引用。
注释
通过在 tag_dict 中设置标签值,将对象状态更改为 self 中的动态标签。
- update(y, X=None, update_params=True)[源代码]#
更新截止值,并可选择更新拟合参数。
如果没有实现特定的估计器更新方法,默认的回退如下:
update_params=True
: 拟合所有迄今为止观察到的数据update_params=False
: 更新截止值并仅记住数据
- 状态要求:
需要状态为“已拟合”,即
self.is_fitted=True
。
self 中的访问:
以”_”结尾的拟合模型属性
self.cutoff
,self.is_fitted
写给自己:
将
self.cutoff
更新为在y
中看到的最新索引。如果
update_params=True
,则更新以 “_” 结尾的拟合模型属性。
- 参数:
- y : 以
sktime
兼容数据容器格式表示的时间序列。时间序列 用于更新预测器的时间序列。
sktime
中的个别数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype。Series
类型 = 单个时间序列,普通预测。pd.DataFrame
、pd.Series
或 ``np.ndarray``(1D 或 2D)Panel
类型 = 时间序列集合,全局/面板预测。pd.DataFrame
带有 2 级行MultiIndex
(实例, 时间)
,3D np.ndarray
(实例, 变量, 时间)
,list
类型的Series
pd.DataFrame
Hierarchical
类型 = 分层集合,用于分层预测。pd.DataFrame
带有3个或更多级别的行MultiIndex
(hierarchy_1, ..., hierarchy_n, time)
有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程
examples/01_forecasting.ipynb
- X :
sktime
兼容格式的时间序列,可选(默认=None)。时间序列 用于更新模型拟合的外生时间序列应与
y
具有相同 类型`(``Series`、Panel
或Hierarchical
)。如果self.get_tag("X-y-must-have-same-index")
,则X.index
必须包含y.index
。- update_paramsbool, 可选 (默认=True)
是否应更新模型参数。如果
False
,则仅更新截止值,模型参数(例如,系数)不会更新。
- y : 以
- 返回:
- self自我引用
- update_predict(y, cv=None, X=None, update_params=True, reset_forecaster=True)[源代码]#
在测试集上迭代地进行预测并更新模型。
简写形式,用于执行多个
update
/predict
执行链,基于时间分割器cv
进行数据回放。与以下相同(如果只有
y
,cv
是非默认值):self.update(y=cv.split_series(y)[0][0])
记得
self.predict()
(稍后在单个批次中返回)self.update(y=cv.split_series(y)[1][0])
记得
self.predict()
(稍后在单个批次中返回)等等
返回所有记忆中的预测
如果没有实现特定的估计器更新方法,默认的回退如下:
update_params=True
: 拟合所有迄今为止观察到的数据update_params=False
: 更新截止值并仅记住数据
- 状态要求:
需要状态为“已拟合”,即
self.is_fitted=True
。
self 中的访问:
以”_”结尾的拟合模型属性
self.cutoff
,self.is_fitted
- 写入自身(除非
reset_forecaster=True
): 将
self.cutoff
更新为在y
中看到的最新索引。如果
update_params=True
,则更新以 “_” 结尾的拟合模型属性。
如果
reset_forecaster=True
,则不更新状态。- 参数:
- y : 以
sktime
兼容数据容器格式表示的时间序列。时间序列 用于更新预测器的时间序列。
sktime
中的个别数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype。Series
类型 = 单个时间序列,普通预测。pd.DataFrame
、pd.Series
或 ``np.ndarray``(1D 或 2D)Panel
类型 = 时间序列集合,全局/面板预测。pd.DataFrame
带有 2 级行MultiIndex
(实例, 时间)
,3D np.ndarray
(实例, 变量, 时间)
,list
类型的Series
pd.DataFrame
Hierarchical
类型 = 分层集合,用于分层预测。pd.DataFrame
带有3个或更多级别的行MultiIndex
(hierarchy_1, ..., hierarchy_n, time)
有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程
examples/01_forecasting.ipynb
- cv继承自 BaseSplitter 的时间交叉验证生成器,可选
例如,
SlidingWindowSplitter
或ExpandingWindowSplitter
;默认 = ExpandingWindowSplitter 带有initial_window=1
和默认值 = y/X 中的单个数据点被逐个添加并进行预测,initial_window = 1
,step_length = 1
和fh = 1
- Xsktime 兼容格式的时间序列,可选(默认=None)
用于更新和预测的外生时间序列 应与
fit
中的y
具有相同的科学类型(Series
、Panel
或Hierarchical
)。如果self.get_tag("X-y-must-have-same-index")
,则X.index
必须包含fh
索引引用。- update_paramsbool, 可选 (默认=True)
是否应更新模型参数。如果
False
,则仅更新截止值,模型参数(例如,系数)不会更新。- 重置预测器bool, 可选 (默认=True)
如果为真,将不会改变预测器的状态,即,更新/预测序列在副本上运行,并且截止点、模型参数、数据内存不会改变。
如果为 False,将在运行 update/predict 序列时更新 self,就像直接调用 update/predict 一样。
- y : 以
- 返回:
- y_pred从多个分割批次中汇总点预测的对象
格式取决于对(截止点,绝对水平)的预测总体
如果绝对水平点的集合是唯一的:类型是 sktime 兼容数据容器格式的时间序列 输出中抑制了截止点 与最近传递的 y 具有相同的类型:Series, Panel, Hierarchical 科学类型,相同格式(见上文)
如果绝对地平线点的集合不是唯一的:类型是 pandas DataFrame,行和列索引为时间戳 行索引对应于从列索引预测的截止点 列索引对应于预测的绝对地平线 条目是从行索引预测的列索引的点预测 如果在该(截止点,地平线)对上没有进行预测,则条目为 nan
- update_predict_single(y=None, fh=None, X=None, update_params=True)[源代码]#
用新数据更新模型并进行预测。
此方法对于在单一步骤中更新和进行预测非常有用。
如果没有实现特定的估计器更新方法,默认的回退操作是先更新,然后预测。
- 状态要求:
需要状态为“已拟合”。
- self 中的访问:
以“_”结尾的拟合模型属性。指向已见数据的指针,self._y 和 self.X self.cutoff, self._is_fitted 如果 update_params=True,则以“_”结尾的模型属性。
- 写给自己:
通过追加行来更新 self._y 和 self._X 与
y
和X
。将 self.cutoff 和 self._cutoff 更新为在y
中看到的最后一个索引。如果 update_params=True,更新以“_”结尾的拟合模型属性。
- 参数:
- y : 以
sktime
兼容数据容器格式表示的时间序列。时间序列 用于更新预测器的时间序列。
sktime
中的个别数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype。Series
类型 = 单个时间序列,普通预测。pd.DataFrame
、pd.Series
或 ``np.ndarray``(1D 或 2D)Panel
类型 = 时间序列集合,全局/面板预测。pd.DataFrame
带有 2 级行MultiIndex
(实例, 时间)
,3D np.ndarray
(实例, 变量, 时间)
,list
类型的Series
pd.DataFrame
Hierarchical
类型 = 分层集合,用于分层预测。pd.DataFrame
带有3个或更多级别的行MultiIndex
(hierarchy_1, ..., hierarchy_n, time)
有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程
examples/01_forecasting.ipynb
- fh : int, list, np.array 或
ForecastingHorizon
,可选(默认=None)int, list, np.array 或 预测时间范围编码了要预测的时间戳。如果已经在
fit
中传递了,则不应再传递。如果在 fit 中未传递,则必须传递,不是可选的。- Xsktime 兼容格式的时间序列,可选(默认=None)
用于更新和预测的外生时间序列 应与
fit
中的y
具有相同的科学类型(Series
、Panel
或Hierarchical
)。如果self.get_tag("X-y-must-have-same-index")
,则X.index
必须包含fh
索引引用。- update_paramsbool, 可选 (默认=True)
是否应更新模型参数。如果
False
,则仅更新截止值,模型参数(例如,系数)不会更新。
- y : 以
- 返回:
- y_predsktime 兼容数据容器格式中的时间序列
在
fh
处的点预测,索引与fh
相同。y_pred
与最近传递的y
具有相同类型:Series
、Panel
、Hierarchical
科学类型,格式相同(见上文)