make_pipeline#
- make_pipeline(*steps)[源代码][源代码]#
从任何类型的估计器创建一个管道。
- 参数:
- 步骤sktime 估计器的元组
按照用于管道构建的相同顺序
- 返回:
- 管道包含步骤的 sktime 管道,按顺序排列
始终是 BaseObject 的子类,具体对象由 scitype 决定,相当于 step[0] * step[1] * … * step[-1] 的结果
示例
示例 1: 预测器管道
>>> from sktime.pipeline import make_pipeline >>> from sktime.transformations.series.exponent import ExponentTransformer >>> from sktime.forecasting.trend import PolynomialTrendForecaster >>> pipe = make_pipeline(ExponentTransformer(), PolynomialTrendForecaster()) >>> type(pipe).__name__ 'TransformedTargetForecaster'
示例 2:分类器管道
>>> from sktime.pipeline import make_pipeline >>> from sktime.transformations.series.exponent import ExponentTransformer >>> from sktime.classification.distance_based import KNeighborsTimeSeriesClassifier >>> pipe = make_pipeline(ExponentTransformer(), KNeighborsTimeSeriesClassifier()) >>> type(pipe).__name__ 'ClassifierPipeline'
示例 3:转换器管道
>>> from sktime.pipeline import make_pipeline >>> from sktime.transformations.series.exponent import ExponentTransformer >>> pipe = make_pipeline(ExponentTransformer(), ExponentTransformer()) >>> type(pipe).__name__ 'TransformerPipeline'