CNTCRegressor#

class CNTCRegressor(n_epochs=2000, batch_size=16, filter_sizes=(16, 8), kernel_sizes=(1, 1), rnn_size=64, lstm_size=8, dense_size=64, callbacks=None, verbose=False, loss='mean_squared_error', metrics=None, random_state=0)[源代码][源代码]#

上下文时间序列神经回归器 (CNTC),如 [1] 中所述。

参数:
n_epochsint, 默认 = 2000

训练模型的轮次数

batch_sizeint, 默认 = 16

每次梯度更新的样本数量。

filter_sizes形状为 (2) 的元组,默认值 = (16, 8)

CCNN 臂中 CNN 的过滤器尺寸。

kernel_sizestwo-tuple, 默认值 = (1, 1)

CCNN 分支中用于 CNN 的一维卷积窗口的长度。

rnn_sizeint, 默认 = 64

CCNN 分支中 RNN 单元的数量。

lstm_sizeint, 默认 = 8

CLSTM 臂中的 LSTM 单元数量。

dense_sizeint, 默认 = 64

CNTC 中全连接层的维度。

random_stateint 或 None, 默认=None

随机数生成的种子。

详细布尔值,默认 = False

是否输出额外信息

损失字符串,默认值为”mean_squared_error”

keras 模型的拟合参数

优化器keras.优化器, 默认=keras.优化器.Adam(),
指标字符串列表,默认=[“准确率”]
属性:
is_fitted

是否已调用 fit

注释

改编自 Fullah 等人的实现 AmaduFullah/CNTC_MODEL

参考文献

[1]
网络最初定义于:

@article{FULLAHKAMARA202057, title = {结合上下文神经网络进行时间序列分类}, journal = {神经计算}, volume = {384}, pages = {57-66}, year = {2020}, issn = {0925-2312}, doi = {https://doi.org/10.1016/j.neucom.2019.10.113}, url = {https://www.sciencedirect.com/science/article/pii/S0925231219316364}, author = {Amadu {Fullah Kamara} and Enhong Chen and Qi Liu and Zhen Pan}, keywords = {时间序列分类, 上下文卷积神经}

网络, 上下文长短期记忆, 注意力, 多层感知器},

}

方法

build_model(input_shape, **kwargs)

构建一个已编译但未训练的 Keras 模型,该模型已准备好进行训练。

check_is_fitted()

检查估计器是否已被拟合。

clone()

获取具有相同超参数的对象克隆。

clone_tags(estimator[, tag_names])

从另一个估计器克隆标签作为动态覆盖。

create_test_instance([parameter_set])

如果可能,构造 Estimator 实例。

create_test_instances_and_names([parameter_set])

创建所有测试实例的列表及其名称的列表。

fit(X, y)

拟合时间序列回归器到训练数据。

get_class_tag(tag_name[, tag_value_default])

获取类标签的值。

get_class_tags()

从类及其所有父类中获取类标签。

get_config()

获取 self 的配置标志

get_fitted_params([deep])

获取拟合参数。

get_param_defaults()

获取对象的参数默认值。

get_param_names([sort])

获取对象的参数名称。

get_params([deep])

获取此对象的参数值字典。

get_tag(tag_name[, tag_value_default, ...])

从估计器类获取标签值并动态覆盖标签。

get_tags()

从估计器类和动态标签覆盖中获取标签。

get_test_params([parameter_set])

返回估计器的测试参数设置。

is_composite()

检查对象是否由其他 BaseObjects 组成。

load_from_path(serial)

从文件位置加载对象。

load_from_serial(serial)

从序列化的内存容器中加载对象。

predict(X)

预测X中序列的标签。

prepare_input(X)

为模型的 CLSTM 部分准备输入。

reset()

将对象重置为初始化后的干净状态。

save([path])

将序列化的自身保存到类字节对象或 (.zip) 文件中。

score(X, y[, multioutput])

在X上,预测标签与真实标签进行评分。

set_config(**config_dict)

将配置标志设置为给定值。

set_params(**params)

设置此对象的参数。

set_random_state([random_state, deep, ...])

为 self 设置 random_state 伪随机种子参数。

set_tags(**tag_dict)

将动态标签设置为给定值。

build_model(input_shape, **kwargs)[源代码][源代码]#

构建一个已编译但未训练的 Keras 模型,该模型已准备好进行训练。

在 sktime 中,时间序列存储在形状为 (d,m) 的 numpy 数组中,其中 d 是维度数量,m 是序列长度。Keras/tensorflow 假设数据形状为 (m,d)。此方法也假设 (m,d)。转置应在拟合时进行。

参数:
input_shape元组

输入层的数据形状应为 (m,d)

返回:
输出一个编译好的 Keras 模型
prepare_input(X)[源代码][源代码]#

为模型的 CLSTM 部分准备输入。

根据论文:

时间序列数据同时输入到 CLSTM 和 CCNN 网络中,并以不同的方式被感知。在 CLSTM 块中,输入数据被视为具有单个时间戳的多变量时间序列。相比之下,CCNN 块接收具有多个时间戳的单变量数据。

返回:
trainX: 元组,

要输入到CNTC两个臂的数据。

check_is_fitted()[源代码]#

检查估计器是否已被拟合。

引发:
NotFittedError

如果估计器尚未拟合。

clone()[源代码]#

获取具有相同超参数的对象克隆。

克隆是一个在初始化后状态下的不同对象,没有共享引用。此函数等同于返回 self 的 sklearn.clone。

引发:
如果克隆不符合规范,由于 __init__ 存在错误,将引发 RuntimeError。

注释

如果成功,值等于 type(self)(**self.get_params(deep=False))

clone_tags(estimator, tag_names=None)[源代码]#

从另一个估计器克隆标签作为动态覆盖。

参数:
估计器继承自 BaseEstimator 的估计器
标签名称str 或 str 列表, 默认 = None

要克隆的标签名称。如果为 None,则使用估计器中的所有标签作为 tag_names

返回:
自我

自我引用。

注释

通过在 tag_set 中设置来自估计器的标签值,将对象状态更改为 self 中的动态标签。

classmethod create_test_instance(parameter_set='default')[源代码]#

如果可能,构造 Estimator 实例。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
实例使用默认参数的类实例

注释

get_test_params 可以返回字典或字典列表。此函数获取 get_test_params 返回的第一个或单个字典,并使用该字典构建对象。

classmethod create_test_instances_and_names(parameter_set='default')[源代码]#

创建所有测试实例的列表及其名称的列表。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
objscls 实例列表

第 i 个实例是 cls(**cls.get_test_params()[i])

名称list of str, 与 objs 长度相同

第 i 个元素是测试中 obj 的第 i 个实例的名称,约定为 {cls.__name__}-{i},如果存在多个实例,否则为 {cls.__name__}

fit(X, y)[源代码]#

拟合时间序列回归器到训练数据。

状态变化:

将状态更改为“已拟合”。

写给自己:

将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型

时间序列以拟合估计器。

可以在任何 Panel scitypemtype 中,例如:

  • pd-multiindex: 具有列 = 变量、索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参见 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多元或不等长序列的面板,详情请参阅 标签参考

ysktime 兼容的表格数据容器,表格科学类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合。第0个索引对应于X中的实例索引,第1个索引(如果适用)对应于X中的多输出向量索引。支持的sktime类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame

返回:
self自我引用。

注释

通过创建一个拟合模型来改变状态,该模型更新以“_”结尾的属性,并将 is_fitted 标志设置为 True。

classmethod get_class_tag(tag_name, tag_value_default=None)[源代码]#

获取类标签的值。

不返回在实例上定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。

参数:
标签名称str

标签值的名称。

tag_value_default任何

如果未找到标签,则使用默认/回退值。

返回:
标签值

self 中 tag_name 标签的值。如果未找到,则返回 tag_value_default

classmethod get_class_tags()[源代码]#

从类及其所有父类中获取类标签。

从 _tags 类属性中检索标签:值对。不返回在实例上通过 set_tags 或 clone_tags 设置的动态标签信息。

返回:
collected_tagsdict

类标签名称字典:标签值对。通过嵌套继承从 _tags 类属性中收集。

get_config()[源代码]#

获取 self 的配置标志

返回:
config_dictdict

配置名称 : 配置值对的字典。从 _config 类属性通过嵌套继承收集,然后是 _onfig_dynamic 对象属性的任何覆盖和新标签。

get_fitted_params(deep=True)[源代码]#

获取拟合参数。

状态要求:

需要状态为“已拟合”。

参数:
深度bool, 默认=True

是否返回组件的拟合参数。

  • 如果为 True,将返回一个包含参数名称 : 值的字典,包括可拟合组件的拟合参数(= 值为 BaseEstimator 的参数)。

  • 如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的拟合参数。

返回:
fitted_params带有字符串键的字典

拟合参数的字典,paramname : paramvalue 键值对包括:

  • always: 此对象的所有拟合参数,通过 get_param_names 获取的值是该键对应的拟合参数值,属于此对象

  • 如果 deep=True,还包含组件参数的键/值对,组件的参数被索引为 [componentname]__[paramname],所有 componentname 的参数都以 paramname 的形式出现,并带有其值。

  • 如果 deep=True,还包含任意级别的组件递归,例如 [componentname]__[componentcomponentname]__[paramname] 等。

classmethod get_param_defaults()[源代码]#

获取对象的参数默认值。

返回:
default_dict: dict[str, Any]

键是 cls 中在 __init__ 中定义了默认值的所有参数,值是 __init__ 中定义的默认值。

classmethod get_param_names(sort=True)[源代码]#

获取对象的参数名称。

参数:
排序bool, 默认=True

是否按字母顺序返回参数名称(True),或按它们在类 __init__ 中出现的顺序返回(False)。

返回:
param_names: list[str]

cls 的参数名称列表。如果 sort=False,则按它们在类 __init__ 中出现的顺序排列。如果 sort=True,则按字母顺序排列。

get_params(deep=True)[源代码]#

获取此对象的参数值字典。

参数:
深度bool, 默认=True

是否返回组件的参数。

  • 如果为真,将返回此对象的参数名称 : 值的字典,包括组件的参数(= BaseObject 值的参数)。

  • 如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的参数。

返回:
参数带有字符串键的字典

参数的字典,paramname : paramvalue 键值对包括:

  • 总是:此对象的所有参数,通过 get_param_names 获取的值是该键的参数值,此对象的值始终与构造时传递的值相同。

  • 如果 deep=True,还包含组件参数的键/值对,组件的参数被索引为 [组件名称]__[参数名称],所有 组件名称 的参数都以其值的形式显示为 参数名称

  • 如果 deep=True,还包含任意级别的组件递归,例如,[componentname]__[componentcomponentname]__[paramname] 等。

get_tag(tag_name, tag_value_default=None, raise_error=True)[源代码]#

从估计器类获取标签值并动态覆盖标签。

参数:
标签名称str

要检索的标签名称

tag_value_default任何类型,可选;默认=None

如果未找到标签,则使用默认/回退值

raise_error布尔值

当未找到标签时是否引发 ValueError

返回:
标签值任何

在 self 中 tag_name 标签的值。如果未找到,如果 raise_error 为 True,则返回错误,否则返回 tag_value_default

引发:
如果 raise_error 为 True,即如果 tag_name 不在其中,则引发 ValueError。
self.get_tags().keys()
get_tags()[源代码]#

从估计器类和动态标签覆盖中获取标签。

返回:
collected_tagsdict

标签名称 : 标签值对的字典。通过嵌套继承从 _tags 类属性中收集,然后从 _tags_dynamic 对象属性中覆盖和新标签。

classmethod get_test_params(parameter_set='default')[源代码]#

返回估计器的测试参数设置。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
参数字典或字典列表,默认 = {}

创建类的测试实例的参数 每个字典都是构造一个“有趣的”测试实例的参数,即 MyClass(**params)MyClass(**params[i]) 创建一个有效的测试实例。create_test_instance 使用 params 中的第一个(或唯一一个)字典

is_composite()[源代码]#

检查对象是否由其他 BaseObjects 组成。

复合对象是一个包含对象的对象,作为参数。在实例上调用,因为这可能因实例而异。

返回:
composite: bool

一个对象是否具有任何值为 BaseObjects 的参数。

property is_fitted[源代码]#

是否已调用 fit

classmethod load_from_path(serial)[源代码]#

从文件位置加载对象。

参数:
串行zip 文件的名称。
返回:
反序列化自身,结果输出到 path,通过 cls.save(path)
classmethod load_from_serial(serial)[源代码]#

从序列化的内存容器中加载对象。

参数:
serial: ``cls.save(None)`` 输出的第一个元素

这是一个大小为3的元组。第一个元素表示pickle序列化的实例。第二个元素表示h5py序列化的``keras``模型。第三个元素表示``.fit()``的pickle序列化历史。

返回:
反序列化自身导致输出 serial,来自 cls.save(None)
predict(X) ndarray[源代码]#

预测X中序列的标签。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型

时间序列以预测标签。

可以在任何 Panel scitypemtype 中,例如:

  • pd-multiindex: 具有列 = 变量、索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参见 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多元或不等长序列的面板,详情请参阅 标签参考

返回:
y_pred : sktime 兼容的表格数据容器,属于 Table 类型sktime 兼容的表格数据容器,属于 Table

预测的回归标签

一维可迭代对象,形状为 [n_instances],或二维可迭代对象,形状为 [n_instances, n_dimensions]。

0-th 索引对应于 X 中的实例索引,1-st 索引(如果适用)对应于 X 中的多输出向量索引。

1D np.npdarray,如果 y 是单变量(一维);否则,与 fit 中传入的 y 类型相同。

reset()[源代码]#

将对象重置为初始化后的干净状态。

使用 reset,使用当前的超参数值(get_params 的结果)运行 __init__。这将移除任何对象属性,除了:

  • 超参数 = __init__ 的参数

  • 包含双下划线的对象属性,即字符串”__”

类和对象方法,以及类属性也不受影响。

返回:
自身

类的实例重置为干净的后初始化状态,但保留当前的超参数值。

注释

等同于 sklearn.clone 但覆盖 self。在调用 self.reset() 之后,self 的值等于 type(self)(**self.get_params(deep=False))

save(path=None)[源代码]#

将序列化的自身保存到类字节对象或 (.zip) 文件中。

行为:如果 path 是 None,则返回一个内存中的序列化自身;如果 path 是一个文件,则将 zip 文件以该名称存储在指定位置。zip 文件的内容包括:_metadata - 包含自身的类,即 type(self)。_obj - 序列化的自身。此类使用默认的序列化(pickle)。keras/ - 模型、优化器和状态存储在此目录中。history - 序列化的历史对象。

参数:
路径无或文件位置(字符串或路径)

如果为 None,则将 self 保存到内存对象中;如果为文件位置,则将 self 保存到该文件位置。例如:

path=”estimator” 则会在当前工作目录下生成一个名为 estimator.zip 的压缩文件。path=”/home/stored/estimator” 则会在 /home/stored/ 目录下存储一个名为 estimator.zip 的压缩文件。

返回:
如果 path 为 None - 内存中序列化的自身
如果 path 是文件位置 - 带有文件引用的 ZipFile
score(X, y, multioutput='uniform_average') float[源代码]#

在X上,预测标签与真实标签进行评分。

参数:
Xsktime 兼容的时间序列面板数据容器,面板科学类型,例如,

pd-multiindex: 列 = 变量的 pd.DataFrame,索引 = 具有第一级 = 实例索引、第二级 = 时间索引的 pd.MultiIndex numpy3D: 形状为 [n_instances, n_dimensions, series_length] 的 3D np.array(任意数量的维度,等长序列)或任何其他支持的 Panel mtype 对于 mtypes 列表,请参阅 datatypes.SCITYPE_REGISTER 的规范,请参阅 examples/AA_datatypes_and_datasets.ipynb 的示例

y形状为 [n_instances, n_dimensions] 的二维 int 型 np.array - 回归标签

用于拟合的索引对应于 X 中的实例索引或形状为 [n_instances] 的 1D np.array 整数数组 - 用于拟合的回归标签对应于 X 中的实例索引

多输出str, 可选 (默认值=”uniform_average”)

{“raw_values”, “uniform_average”, “variance_weighted”}, 形状为 (n_outputs,) 或 None 的类数组对象, 默认值为 “uniform_average”。定义多个输出分数的聚合方式。类数组对象定义用于平均分数的权重。

返回:
float(默认)或 1D np.array of float

预测(X)与y的R平方得分,如果multioutput=”uniform_average”或”variance_weighted”,或者y是单变量,则为浮点数;如果multioutput=”raw_values”且y是多变量,则为1D np.array。

set_config(**config_dict)[源代码]#

将配置标志设置为给定值。

参数:
config_dictdict

配置名称 : 配置值对的字典。有效的配置、值及其含义如下所示:

显示str, “diagram” (默认), 或 “text”

jupyter 内核如何显示 self 的实例

  • “diagram” = html 盒子图表示

  • “text” = 字符串打印输出

print_changed_onlybool, 默认=True

是否仅打印与默认值不同的自身参数(False),或者打印所有参数名称和值(False)。不嵌套,即仅影响自身,不影响组件估计器。

警告str, “on” (默认), 或 “off”

是否引发警告,仅影响来自 sktime 的警告

  • “on” = 将引发来自 sktime 的警告

  • “off” = 不会从 sktime 引发警告

后端:并行str, 可选, 默认=”None”

在广播/矢量化时用于并行化的后端,是其中之一

  • “None”: 按顺序执行循环,简单的列表推导

  • “loky”, “multiprocessing” 和 “threading”: 使用 joblib.Parallel

  • “joblib”:自定义和第三方 joblib 后端,例如 spark

  • “dask”: 使用 dask,需要在环境中安装 dask

backend:parallel:paramsdict, 可选, 默认={} (未传递参数)

传递给并行化后端的额外参数作为配置。有效键取决于 backend:parallel 的值:

  • “None”: 没有额外参数,backend_params 被忽略

  • “loky”, “multiprocessing” 和 “threading”: 默认的 joblib 后端 任何有效的 joblib.Parallel 键都可以在这里传递,例如 n_jobs,除了 backend 直接由 backend 控制。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 的默认值。

  • “joblib”: 自定义和第三方 joblib 后端,例如 spark。任何 joblib.Parallel 的有效键都可以在这里传递,例如 n_jobs,在这种情况下,backend 必须作为 backend_params 的键传递。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 的默认值。

  • “dask”: 任何 dask.compute 的有效键都可以传递,例如,scheduler

返回:
self对自身的引用。

注释

更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。

set_params(**params)[源代码]#

设置此对象的参数。

该方法适用于简单估计器以及复合对象。参数键字符串 <component>__<parameter> 可用于复合对象,即包含其他对象的对象,以访问组件 <component> 中的 <parameter>。如果这使得引用明确,例如没有两个组件的参数名称相同,则也可以使用不带 <component>__ 的字符串 <parameter>

参数:
**参数dict

BaseObject 参数,键必须是 <component>__<parameter> 字符串。如果 get_params 键中唯一,__ 后缀可以别名为完整字符串。

返回:
self引用自身(在参数设置之后)
set_random_state(random_state=None, deep=True, self_policy='copy')[源代码]#

为 self 设置 random_state 伪随机种子参数。

通过 estimator.get_params 查找名为 random_state 的参数,并通过 set_params 将其设置为由 random_state 派生的整数。这些整数通过 sample_dependent_seed 的链哈希采样得到,并保证种子随机生成器的伪随机独立性。

根据 self_policy 应用于 estimator 中的 random_state 参数,并且仅当 deep=True 时应用于剩余的组件估计器。

注意:即使 self 没有 random_state,或者没有任何组件有 random_state 参数,也会调用 set_params。因此, set_random_state 将重置任何 scikit-base 估计器,即使那些没有 random_state 参数的估计器。

参数:
random_stateint, RandomState 实例或 None, 默认=None

伪随机数生成器,用于控制随机整数的生成。传递 int 以在多次函数调用中获得可重复的输出。

深度bool, 默认=True

是否在子估计器中设置随机状态。如果为 False,则仅设置 selfrandom_state 参数(如果存在)。如果为 True,则还会在子估计器中设置 random_state 参数。

self_policystr, 可选值为 {“copy”, “keep”, “new”}, 默认值为 “copy”
  • “复制”:estimator.random_state 被设置为输入的 random_state

  • “保持” : estimator.random_state 保持不变

  • “new” : estimator.random_state 被设置为一个新随机状态,

源自输入 random_state,并且通常与其不同

返回:
self自我引用
set_tags(**tag_dict)[源代码]#

将动态标签设置为给定值。

参数:
**标签字典dict

标签名称: 标签值对的字典。

返回:
自我

自我引用。

注释

通过在 tag_dict 中设置标签值,将对象状态更改为 self 中的动态标签。