神经预测RNN#
- class NeuralForecastRNN(freq: str | int = 'auto', local_scaler_type: Literal['standard', 'robust', 'robust-iqr', 'minmax', 'boxcox'] | None = None, futr_exog_list: list[str] | None = None, verbose_fit: bool = False, verbose_predict: bool = False, input_size: int = -1, inference_input_size: int = -1, encoder_n_layers: int = 2, encoder_hidden_size: int = 200, encoder_activation: str = 'tanh', encoder_bias: bool = True, encoder_dropout: float = 0.0, context_size: int = 10, decoder_hidden_size: int = 200, decoder_layers: int = 2, loss=None, valid_loss=None, max_steps: int = 1000, learning_rate: float = 0.001, num_lr_decays: int = -1, early_stop_patience_steps: int = -1, val_check_steps: int = 100, batch_size=32, valid_batch_size: int | None = None, scaler_type: str = 'robust', random_seed=1, num_workers_loader=0, drop_last_loader=False, trainer_kwargs: dict | None = None, optimizer=None, optimizer_kwargs: dict | None = None)[源代码][源代码]#
NeuralForecast RNN 模型。
通过
neuralforecast.NeuralForecast
[2] 访问neuralforecast.models.RNN
[1],来自 Nixtla 的neuralforecast
[3]。多层 Elman RNN (RNN),带有 MLP 解码器。网络具有
tanh
或relu
非线性激活函数,使用 ADAM 随机梯度下降进行训练。- 参数:
- 频率Union[str, int] (默认值=”auto”)
数据的频率,请参阅
pandas
中的可用频率 [4] ,在y
中使用 RangeIndex 时使用 int freq默认(“auto”)从
fit
中的 ForecastingHorizon 解释 freq- local_scaler_typestr (默认=None)
在拟合之前应用于所有特征的每系列缩放器,在预测后进行反转
可以是以下之一:
‘标准’
‘稳健’
‘robust-iqr’
‘最小最大’
‘boxcox’
- futr_exog_liststr 列表, (默认=None)
未来外生变量
- verbose_fitbool (默认=False)
在拟合过程中打印处理步骤
- 详细预测bool (默认=False)
在预测过程中打印处理步骤
- input_sizeint (默认值=-1)
截断训练反向传播的最大序列长度
默认 (-1) 使用所有历史记录
- inference_input_sizeint (默认值=-1)
截断推理的最大序列长度
默认 (-1) 使用所有历史记录
- encoder_n_layersint (默认值=2)
RNN 的层数
- encoder_hidden_sizeint (默认值=200)
RNN 隐藏状态大小的单位
- encoder_activationstr (默认值=”tanh”)
RNN 激活类型的选择,可以是
tanh
或relu
- encoder_biasbool (默认=True)
是否在RNN单元中使用偏置 b_ih, b_hh
- encoder_dropoutfloat (默认值=0.0)
应用于 RNN 输出的 dropout 正则化
- context_sizeint (默认=10)
预测窗口中每个时间戳的上下文向量大小
- decoder_hidden_sizeint (默认值=200)
MLP解码器的隐藏层大小
- decoder_layersint (默认值=2)
MLP解码器的层数
- 损失pytorch 模块 (默认=None)
从损失集合中实例化的训练损失类 [Re6526eedb6ab-5]
- valid_losspytorch 模块 (默认=None)
从损失集合中实例化的验证损失类 [Re6526eedb6ab-5]
- max_stepsint (默认值=1000)
最大训练步数
- 学习率float (默认值=1e-3)
学习率在 (0, 1) 之间
- num_lr_decaysint (默认值=-1)
学习率衰减的次数,均匀分布在 max_steps 中
- early_stop_patience_stepsint (默认值=-1)
在提前停止之前的验证迭代次数
- val_check_stepsint (默认=100)
每两次验证损失检查之间的训练步数
- batch_sizeint (默认=32)
每批中不同系列的数量
- valid_batch_sizeOptional[int] (默认=None)
每个验证和测试批次中的不同系列数量
- scaler_typestr (默认值=”robust”)
时间输入归一化的缩放器类型
- random_seedint (默认=1)
pytorch 初始化器和 numpy 生成器的 random_seed
- num_workers_loaderint (默认=0)
TimeSeriesDataLoader
使用的工人- drop_last_loaderbool (默认=False)
TimeSeriesDataLoader
是否丢弃最后一个非完整批次- trainer_kwargsdict (默认=None)
关键字训练器参数继承自 PyTorch Lightning 的训练器 [Re6526eedb6ab-6]
- 优化器 : pytorch 优化器 (默认=None) [Re6526eedb6ab-7]pytorch 优化器 (默认=None)
用于训练的优化器,如果传递了 None,则默认为 Adam
- optimizer_kwargs : dict (默认=None) [Re6526eedb6ab-8]dict (默认=None)
传递给用户定义优化器的参数字典
- 属性:
注释
如果未指定
loss
,则使用 MAE 作为训练的损失函数。只有
futr_exog_list
将被视为外生变量。
参考文献
[4]https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases .. [Re6526eedb6ab-5] https://nixtlaverse.nixtla.io/neuralforecast/losses.pytorch.html .. [Re6526eedb6ab-6] https://lightning.ai/docs/pytorch/stable/api/pytorch_lightning.trainer.trainer.Trainer.html#lightning.pytorch.trainer.trainer.Trainer .. [Re6526eedb6ab-7] https://pytorch.org/docs/stable/optim.html .. [Re6526eedb6ab-8] https://pytorch.org/docs/stable/optim.html#algorithms
示例
>>> >>> # importing necessary libraries >>> from sktime.datasets import load_longley >>> from sktime.forecasting.neuralforecast import NeuralForecastRNN >>> from sktime.split import temporal_train_test_split >>> >>> # loading the Longley dataset and splitting it into train and test subsets >>> y, X = load_longley() >>> y_train, y_test, X_train, X_test = temporal_train_test_split(y, X, test_size=4) >>> >>> # creating model instance configuring the hyperparameters >>> model = NeuralForecastRNN( ... "A-DEC", futr_exog_list=["ARMED", "POP"], max_steps=5 ... ) >>> >>> # fitting the model >>> model.fit(y_train, X=X_train, fh=[1, 2, 3, 4]) Seed set to 1 Epoch 4: 100%|█| 1/1 [00:00<00:00, 42.85it/s, v_num=870, train_loss_step=0.589, train_loss_epoc NeuralForecastRNN(freq='A-DEC', futr_exog_list=['ARMED', 'POP'], max_steps=5) >>> >>> # getting point predictions >>> model.predict(X=X_test) Predicting DataLoader 0: 100%|██████████████████████████████████| 1/1 [00:00<00:00, 198.64it/s] 1959 66241.984375 1960 66700.125000 1961 66550.195312 1962 67310.007812 Freq: A-DEC, Name: TOTEMP, dtype: float64 >>>
方法
检查估计器是否已被拟合。
clone
()获取具有相同超参数的对象的克隆。
clone_tags
(estimator[, tag_names])从另一个估计器克隆标签作为动态覆盖。
create_test_instance
([parameter_set])如果可能,构造估计器实例。
create_test_instances_and_names
([parameter_set])创建所有测试实例的列表及其名称列表。
fit
(y[, X, fh])将预测器拟合到训练数据。
fit_predict
(y[, X, fh, X_pred])在未来的时间范围内拟合和预测时间序列。
get_class_tag
(tag_name[, tag_value_default])获取类标签的值。
从类及其所有父类中获取类标签。
获取 self 的配置标志
get_fitted_params
([deep])获取拟合参数。
获取对象的参数默认值。
get_param_names
([sort])获取对象的参数名称。
get_params
([deep])获取此对象的参数值字典。
get_tag
(tag_name[, tag_value_default, ...])从估计器类获取标签值并动态覆盖标签。
get_tags
()从估计器类和动态标签覆盖中获取标签。
get_test_params
([parameter_set])返回估计器的测试参数设置。
检查对象是否由其他 BaseObjects 组成。
load_from_path
(serial)从文件位置加载对象。
load_from_serial
(serial)从序列化的内存容器中加载对象。
predict
([fh, X])预测未来时间范围内的时序数据。
predict_interval
([fh, X, coverage])计算/返回预测区间预测。
predict_proba
([fh, X, marginal])计算/返回完全概率预测。
predict_quantiles
([fh, X, alpha])计算/返回分位数预测。
predict_residuals
([y, X])返回时间序列预测的残差。
predict_var
([fh, X, cov])计算/返回方差预测。
reset
()将对象重置为初始化后的干净状态。
save
([path, serialization_format])将序列化的自身保存到类字节对象或 (.zip) 文件中。
score
(y[, X, fh])使用MAPE(非对称)对地面实况进行分数预测。
set_config
(**config_dict)将配置标志设置为给定值。
set_params
(**params)设置此对象的参数。
set_random_state
([random_state, deep, ...])设置 random_state 伪随机种子参数为 self。
set_tags
(**tag_dict)将动态标签设置为给定值。
update
(y[, X, update_params])更新截止值,并可选地更新拟合参数。
update_predict
(y[, cv, X, update_params, ...])在测试集上迭代地进行预测并更新模型。
update_predict_single
([y, fh, X, update_params])使用新数据更新模型并进行预测。
- classmethod get_test_params(parameter_set='default')[源代码][源代码]#
返回估计器的测试参数设置。
- 参数:
- 参数集str, 默认值为”default”
要返回的测试参数集的名称,用于测试中。如果没有为某个值定义特殊参数,将返回
"default"
集。目前没有为预测器保留的值。
- 返回:
- 参数字典或字典列表,默认 = {}
创建类的测试实例的参数 每个字典都是用于构造一个“有趣的”测试实例的参数,即
MyClass(**params)
或MyClass(**params[i])
创建一个有效的测试实例。create_test_instance
使用params
中的第一个(或唯一一个)字典
- clone()[源代码]#
获取具有相同超参数的对象的克隆。
克隆是一个在初始化后状态下的不同对象,不共享引用。此函数等同于返回 self 的 sklearn.clone。
- 引发:
- 如果克隆不符合规范,由于
__init__
存在错误,将引发 RuntimeError。
- 如果克隆不符合规范,由于
注释
如果成功,值等于
type(self)(**self.get_params(deep=False))
。
- clone_tags(estimator, tag_names=None)[源代码]#
从另一个估计器克隆标签作为动态覆盖。
- 参数:
- 估计器继承自
BaseEstimator
的估计器 - 标签名称str 或 str 列表, 默认 = None
要克隆的标签名称。如果为 None,则使用估计器中的所有标签作为 tag_names。
- 估计器继承自
- 返回:
- 自我
自我引用。
注释
通过在 tag_set 中设置来自估计器的标签值,将对象状态更改为动态标签。
- classmethod create_test_instance(parameter_set='default')[源代码]#
如果可能,构造估计器实例。
- 参数:
- 参数集str, 默认值为”default”
要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。
- 返回:
- 实例使用默认参数的类实例
注释
get_test_params 可以返回字典或字典列表。此函数获取 get_test_params 返回的第一个或单个字典,并用该字典构建对象。
- classmethod create_test_instances_and_names(parameter_set='default')[源代码]#
创建所有测试实例的列表及其名称列表。
- 参数:
- 参数集str, 默认值为”default”
要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。
- 返回:
- objscls 的实例列表
第 i 个实例是 cls(**cls.get_test_params()[i])
- 名称list of str, 与 objs 长度相同
第 i 个元素是测试中第 i 个 obj 实例的名称,约定为 {cls.__name__}-{i},如果存在多个实例,否则为 {cls.__name__}。
- property cutoff[源代码]#
截止 = “当前时间” 预测器的状态。
- 返回:
- 截止pandas 兼容的索引元素,或 None
pandas 兼容的索引元素,如果已设置截止值;否则为 None
- fit(y, X=None, fh=None)[源代码]#
将预测器拟合到训练数据。
- 状态变化:
将状态更改为“已拟合”。
写给自己:
设置以“_”结尾的拟合模型属性,拟合属性可以通过
get_fitted_params
进行检查。将
self.is_fitted
标志设置为True
。将
self.cutoff
设置为在y
中看到的最后一个索引。如果传递了
fh
,则将其存储到self.fh
中。
- 参数:
- y : 以
sktime
兼容数据容器格式表示的时间序列。时间序列在 要拟合预测器的时间序列。
sktime
中的单个数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype。Series
类型 = 单个时间序列,常规预测。pd.DataFrame
、pd.Series
或 ``np.ndarray``(1D 或 2D)Panel
类型 = 时间序列集合,全局/面板预测。pd.DataFrame
带有 2 级行MultiIndex
(实例, 时间)
,3D np.ndarray
(实例, 变量, 时间)
,list
类型的Series
pd.DataFrame
Hierarchical
类型 = 分层集合,用于分层预测。pd.DataFrame
带有3个或更多级别的行MultiIndex
(hierarchy_1, ..., hierarchy_n, time)
有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程
examples/01_forecasting.ipynb
- fhint, list, np.array 或 ForecastingHorizon, 可选 (默认=None)
预测时间范围编码了要预测的时间戳。如果
self.get_tag("requires-fh-in-fit")
为True
,则必须在fit
中传递,不可选- X :
sktime
兼容格式的时间序列,可选(默认=None)。时间序列在 要拟合模型的外生时间序列。应与
y
具有相同的 scitype`(``Series`、Panel
或Hierarchical
)。如果self.get_tag("X-y-must-have-same-index")
,则X.index
必须包含y.index
。
- y : 以
- 返回:
- self自我引用。
- fit_predict(y, X=None, fh=None, X_pred=None)[源代码]#
在未来的时间范围内拟合和预测时间序列。
与
fit(y, X, fh).predict(X_pred)
相同。如果未传递X_pred
,则与fit(y, fh, X).predict(X)
相同。- 状态变化:
将状态更改为“已拟合”。
写给自己:
设置以“_”结尾的拟合模型属性,拟合属性可以通过
get_fitted_params
进行检查。将
self.is_fitted
标志设置为True
。将
self.cutoff
设置为在y
中看到的最后一个索引。将
fh
存储到self.fh
中。
- 参数:
- ysktime 兼容数据容器格式中的时间序列
要拟合预测器的时间序列。
sktime
中的单个数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype。Series
类型 = 单个时间序列,常规预测。pd.DataFrame
、pd.Series
或 ``np.ndarray``(1D 或 2D)Panel
类型 = 时间序列集合,全局/面板预测。pd.DataFrame
带有 2 级行MultiIndex
(实例, 时间)
,3D np.ndarray
(实例, 变量, 时间)
,list
类型的Series
pd.DataFrame
Hierarchical
类型 = 分层集合,用于分层预测。pd.DataFrame
带有3个或更多级别的行MultiIndex
(hierarchy_1, ..., hierarchy_n, time)
有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程
examples/01_forecasting.ipynb
- fh : int, list, np.array 或
ForecastingHorizon
(不可选)int, list, np.array 或 预测范围编码了要预测的时间戳。
- X :
sktime
兼容格式的时间序列,可选(默认=None)。时间序列在 要拟合模型的外生时间序列。应与
y
具有相同的 scitype`(``Series`、Panel
或Hierarchical
)。如果self.get_tag("X-y-must-have-same-index")
,则X.index
必须包含y.index
。- X_predsktime 兼容格式的时间序列,可选(默认=None)
用于预测的外生时间序列。如果传递,将在预测中使用,而不是X。应与``fit``中的``y``具有相同的科学类型(
Series
、Panel``或``Hierarchical
)。如果``self.get_tag(“X-y-must-have-same-index”)``,则``X.index``必须包含``fh``索引引用。
- 返回:
- y_predsktime 兼容数据容器格式中的时间序列
在
fh
处的点预测,索引与fh
相同。y_pred
与最近传递的y
具有相同类型:Series
、Panel
、Hierarchical
科学类型,格式相同(见上文)
- classmethod get_class_tag(tag_name, tag_value_default=None)[源代码]#
获取类标签的值。
不返回在实例上定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。
- 参数:
- 标签名称str
标签值的名称。
- tag_value_default任何
如果未找到标签,则使用默认/回退值。
- 返回:
- tag_value
self 中 tag_name 标签的值。如果未找到,则返回 tag_value_default。
- classmethod get_class_tags()[源代码]#
从类及其所有父类中获取类标签。
从 _tags 类属性中检索标签:值对。不返回在实例上通过 set_tags 或 clone_tags 设置的动态标签信息。
- 返回:
- collected_tagsdict
类标签名称字典:标签值对。通过嵌套继承从 _tags 类属性中收集。
- get_config()[源代码]#
获取 self 的配置标志
- 返回:
- config_dictdict
配置名称 : 配置值对的字典。从 _config 类属性通过嵌套继承收集,然后是 _config_dynamic 对象属性的任何覆盖和新标签。
- get_fitted_params(deep=True)[源代码]#
获取拟合参数。
- 状态要求:
需要状态为“已拟合”。
- 参数:
- 深度bool, 默认=True
是否返回组件的拟合参数。
如果为 True,将返回一个字典,包含此对象的参数名称 : 值,包括可拟合组件的拟合参数(= 值为 BaseEstimator 的参数)。
如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的拟合参数。
- 返回:
- fitted_params带有字符串键的字典
拟合参数的字典,paramname : paramvalue 键值对包括:
always: 此对象的所有拟合参数,通过
get_param_names
获取的值是该键对应的拟合参数值,属于此对象如果
deep=True
,还将包含组件参数的键/值对,组件的参数被索引为[componentname]__[paramname]
,所有componentname
的参数都以其值的形式显示为paramname
。如果
deep=True
,还包含任意层级的组件递归,例如,[componentname]__[componentcomponentname]__[paramname]
等。
- classmethod get_param_defaults()[源代码]#
获取对象的参数默认值。
- 返回:
- default_dict: dict[str, Any]
键是 cls 中在 __init__ 中定义了默认值的所有参数,值是 __init__ 中定义的默认值。
- classmethod get_param_names(sort=True)[源代码]#
获取对象的参数名称。
- 参数:
- 排序bool, 默认=True
是否按字母顺序返回参数名称(True),或者按它们在类
__init__
中出现的顺序返回(False)。
- 返回:
- param_names: list[str]
cls 的参数名称列表。如果
sort=False
,则按它们在类__init__
中出现的顺序排列。如果sort=True
,则按字母顺序排列。
- get_params(deep=True)[源代码]#
获取此对象的参数值字典。
- 参数:
- 深度bool, 默认=True
是否返回组件的参数。
如果为 True,将返回此对象的参数名称 : 值的字典,包括组件的参数(= BaseObject 值的参数)。
如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的参数。
- 返回:
- 参数带有字符串键的字典
参数的字典,paramname : paramvalue 键值对包括:
总是:此对象的所有参数,通过 get_param_names 值是该键的参数值,此对象的值总是与构造时传递的值相同。
如果 deep=True,还包含组件参数的键/值对,组件的参数被索引为 [组件名称]__[参数名称],所有 组件名称 的参数都以其值作为 参数名称 出现。
如果 deep=True,还包含任意层级的组件递归,例如,[componentname]__[componentcomponentname]__[paramname] 等。
- get_tag(tag_name, tag_value_default=None, raise_error=True)[源代码]#
从估计器类获取标签值并动态覆盖标签。
- 参数:
- 标签名称str
要检索的标签名称
- tag_value_default任何类型,可选;默认=None
如果未找到标签,则使用默认/回退值
- raise_error布尔
当未找到标签时是否引发 ValueError
- 返回:
- 标签值任何
self 中 tag_name 标签的值。如果未找到,如果 raise_error 为 True,则返回错误,否则返回 tag_value_default。
- 引发:
- 如果 raise_error 为 True,即如果 tag_name 不在其中,则引发 ValueError。
- self.get_tags().keys()
- get_tags()[源代码]#
从估计器类和动态标签覆盖中获取标签。
- 返回:
- collected_tagsdict
标签名称 : 标签值对的字典。从 _tags 类属性通过嵌套继承收集,然后是 _tags_dynamic 对象属性的任何覆盖和新标签。
- is_composite()[源代码]#
检查对象是否由其他 BaseObjects 组成。
复合对象是一个包含对象的对象,作为参数。在实例上调用,因为这可能因实例而异。
- 返回:
- composite: bool
一个对象是否有任何参数的值是 BaseObjects。
- classmethod load_from_path(serial)[源代码]#
从文件位置加载对象。
- 参数:
- 串行ZipFile(path).open(“object”) 的结果
- 返回:
- 反序列化自身,结果输出到
path
,通过cls.save(path)
- 反序列化自身,结果输出到
- classmethod load_from_serial(serial)[源代码]#
从序列化的内存容器中加载对象。
- 参数:
- serial :
cls.save(None)
输出的第一个元素输出中的第一个元素
- serial :
- 返回:
- 反序列化自身,结果输出为
serial
,来自cls.save(None)
- 反序列化自身,结果输出为
- predict(fh=None, X=None)[源代码]#
预测未来时间范围内的时序数据。
- 状态要求:
需要状态为“已拟合”,即
self.is_fitted=True
。
自身访问:
以“_”结尾的拟合模型属性。
self.cutoff
,self.is_fitted
- 写给自己:
如果传递了
fh
且之前未传递过,则将其存储到self.fh
中。
- 参数:
- fh : int, list, np.array 或
ForecastingHorizon
,可选(默认=None)int, list, np.array 或 预测时间范围编码了要预测的时间戳。如果已经在
fit
中传递,则不应传递。如果在 fit 中未传递,则必须传递,不可选。- X :
sktime
兼容格式的时间序列,可选(默认=None)时间序列在 用于预测的外生时间序列。应与``fit``中的``y``具有相同的科学类型(
Series
、Panel``或``Hierarchical
)。如果``self.get_tag(“X-y-must-have-same-index”)``,则``X.index``必须包含``fh``索引引用。
- fh : int, list, np.array 或
- 返回:
- y_predsktime 兼容数据容器格式中的时间序列
在
fh
处的点预测,索引与fh
相同。y_pred
与最近传递的y
具有相同类型:Series
、Panel
、Hierarchical
科学类型,格式相同(见上文)
- predict_interval(fh=None, X=None, coverage=0.9)[源代码]#
计算/返回预测区间预测。
如果
coverage
是可迭代的,将计算多个区间。- 状态要求:
需要状态为“已拟合”,即
self.is_fitted=True
。
自身访问:
以“_”结尾的拟合模型属性。
self.cutoff
,self.is_fitted
- 写给自己:
如果传递了
fh
且之前未传递过,则将其存储到self.fh
中。
- 参数:
- fh : int, list, np.array 或
ForecastingHorizon
,可选(默认=None)int, list, np.array 或 预测时间范围编码了要预测的时间戳。如果已经在
fit
中传递,则不应传递。如果在 fit 中未传递,则必须传递,不可选。- X :
sktime
兼容格式的时间序列,可选(默认=None)时间序列在 用于预测的外生时间序列。应与``fit``中的``y``具有相同的科学类型(
Series
、Panel``或``Hierarchical
)。如果``self.get_tag(“X-y-must-have-same-index”)``,则``X.index``必须包含``fh``索引引用。- 覆盖率浮点数或唯一值的浮点数列表,可选(默认=0.90)
预测区间的名义覆盖率
- fh : int, list, np.array 或
- 返回:
- pred_intpd.DataFrame
- 列具有多重索引:第一级是来自拟合中 y 的变量名称,
- 计算区间所对应的二级覆盖分数。
按照输入
coverage
中的相同顺序。
第三级是字符串 “lower” 或 “upper”,用于下/上区间端点。
- 行索引为 fh,附加(上层)级别等于实例级别,
从 y 中可以看出,如果 y 在拟合中是面板或分层的。
- 条目是下限/上限区间端的预测。
对于第一列索引中的变量,在第二列索引的名义覆盖范围内,根据第三列索引的上下限,对于行索引。上下限区间预测等价于在覆盖范围内的alpha = 0.5 - c/2, 0.5 + c/2的分位数预测。
- predict_proba(fh=None, X=None, marginal=True)[源代码]#
计算/返回完全概率预测。
注意:目前仅针对 Series(非面板,非分层)y 实现。
- 状态要求:
需要状态为“已拟合”,即
self.is_fitted=True
。
自身访问:
以“_”结尾的拟合模型属性。
self.cutoff
,self.is_fitted
- 写给自己:
如果传递了
fh
且之前未传递过,则将其存储到self.fh
中。
- 参数:
- fh : int, list, np.array 或
ForecastingHorizon
,可选(默认=None)int, list, np.array 或 预测时间范围编码了要预测的时间戳。如果已经在
fit
中传递,则不应传递。如果在 fit 中未传递,则必须传递,不可选。- X :
sktime
兼容格式的时间序列,可选(默认=None)时间序列在 用于预测的外生时间序列。应与``fit``中的``y``具有相同的科学类型(
Series
、Panel``或``Hierarchical
)。如果``self.get_tag(“X-y-must-have-same-index”)``,则``X.index``必须包含``fh``索引引用。- 边缘的bool, 可选 (默认=True)
返回的分布是否按时间索引是边际的
- fh : int, list, np.array 或
- 返回:
- pred_distsktime 基础分布
如果 marginal=True,则为预测分布;如果 marginal=False 并通过方法实现,则为按时间点的边际分布;如果 marginal=False 并通过方法实现,则为联合分布。
- predict_quantiles(fh=None, X=None, alpha=None)[源代码]#
计算/返回分位数预测。
如果
alpha
是可迭代的,将计算多个分位数。- 状态要求:
需要状态为“已拟合”,即
self.is_fitted=True
。
自身访问:
以“_”结尾的拟合模型属性。
self.cutoff
,self.is_fitted
- 写给自己:
如果传递了
fh
且之前未传递过,则将其存储到self.fh
中。
- 参数:
- fh : int, list, np.array 或
ForecastingHorizon
,可选(默认=None)int, list, np.array 或 预测时间范围编码了要预测的时间戳。如果已经在
fit
中传递,则不应传递。如果在 fit 中未传递,则必须传递,不可选。- X :
sktime
兼容格式的时间序列,可选(默认=None)时间序列在 用于预测的外生时间序列。应与``fit``中的``y``具有相同的科学类型(
Series
、Panel``或``Hierarchical
)。如果``self.get_tag(“X-y-must-have-same-index”)``,则``X.index``必须包含``fh``索引引用。- alpha浮点数或唯一值的浮点数列表,可选(默认=[0.05, 0.95])
概率或其列表,用于计算分位数预测。
- fh : int, list, np.array 或
- 返回:
- 分位数pd.DataFrame
- 列具有多重索引:第一级是来自拟合中 y 的变量名称,
第二级是传递给函数的 alpha 值。
- 行索引为 fh,附加(上层)级别等于实例级别,
从 y 中可以看出,如果 y 在拟合中是面板或分层的。
- 条目是分位数预测,对于列索引中的变量。
在第二列索引的量化概率处,对应于行索引。
- predict_residuals(y=None, X=None)[源代码]#
返回时间序列预测的残差。
将在 y.index 处为预测计算残差。
如果必须在拟合中传递 fh,则必须与 y.index 一致。如果 y 是 np.ndarray,并且在拟合中没有传递 fh,则残差将在 fh 为 range(len(y.shape[0])) 时计算。
- 状态要求:
需要状态为“已拟合”。如果设置了 fh,则必须对应于 y 的索引(pandas 或整数)
- 自身访问:
以“_”结尾的拟合模型属性。self.cutoff, self._is_fitted
- 写给自己:
无。
- 参数:
- ysktime 兼容数据容器格式中的时间序列
带有地面真值观测的时间序列,用于计算残差。必须与预测返回的类型、维度及索引相同。
如果为 None,则使用目前为止看到的 y(self._y),特别是:
如果前面调用了一次拟合,那么会产生样本内残差
如果拟合需要
fh
,它必须指向拟合中 y 的索引。
- Xsktime 兼容格式的时间序列,可选(默认=None)
外生时间序列用于更新和预测 应与
fit
中的y
具有相同的科学类型(Series
、Panel
或Hierarchical
)。如果self.get_tag("X-y-must-have-same-index")
,则X.index
必须同时包含fh
索引引用和y.index
。
- 返回:
- y_res : 以
sktime
兼容数据容器格式存储的时间序列时间序列在 在
fh
处的预测残差,索引与fh
相同。y_res
与最近传递的y
具有相同类型:Series
、Panel
、Hierarchical
科学类型,格式相同(见上文)
- y_res : 以
- predict_var(fh=None, X=None, cov=False)[源代码]#
计算/返回方差预测。
- 状态要求:
需要状态为“已拟合”,即
self.is_fitted=True
。
自身访问:
以“_”结尾的拟合模型属性。
self.cutoff
,self.is_fitted
- 写给自己:
如果传递了
fh
且之前未传递过,则将其存储到self.fh
中。
- 参数:
- fh : int, list, np.array 或
ForecastingHorizon
,可选(默认=None)int, list, np.array 或 预测时间范围编码了要预测的时间戳。如果已经在
fit
中传递,则不应传递。如果在 fit 中未传递,则必须传递,不可选。- X :
sktime
兼容格式的时间序列,可选(默认=None)时间序列在 用于预测的外生时间序列。应与``fit``中的``y``具有相同的科学类型(
Series
、Panel``或``Hierarchical
)。如果``self.get_tag(“X-y-must-have-same-index”)``,则``X.index``必须包含``fh``索引引用。- covbool, 可选 (默认=False)
如果为 True,则计算协方差矩阵预测。如果为 False,则计算边际方差预测。
- fh : int, list, np.array 或
- 返回:
- pred_var : pd.DataFrame, 格式取决于
cov
变量pd.DataFrame,格式依赖于 - 如果 cov=False:
- 列名与在
fit
/update
中传递的y
完全相同。 对于无名称的格式,列索引将是一个 RangeIndex。
- 行索引是 fh,附加级别等于实例级别,
从 y 中可以看出,如果 y 在拟合中是面板或分层的。
条目是变异预测,针对列索引中的变量。给定变量和fh索引的变异预测是一个预测
给定观测数据,计算该变量和索引的方差。
- 列名与在
- 如果 cov=True:
- 列索引是一个多重索引:第一层是变量名称(如上所示)
2nd level 是 fh。
- 行索引是 fh,附加级别等于实例级别,
从 y 中可以看出,如果 y 在拟合中是面板或分层的。
- 条目是(共)变异预测,对于列索引中的变量,并且
行和列中时间索引之间的协方差。
注意:不同变量之间不会返回协方差预测。
- pred_var : pd.DataFrame, 格式取决于
- reset()[源代码]#
将对象重置为初始化后的干净状态。
使用 reset,使用超参数的当前值(get_params 的结果)运行 __init__。这将移除任何对象属性,除了:
超参数 = __init__ 的参数
包含双下划线的对象属性,即字符串”__”
类和对象方法,以及类属性也不受影响。
- 返回:
- 自身
将类的实例重置为干净的初始化后状态,但保留当前的超参数值。
注释
等同于 sklearn.clone 但覆盖了 self。在调用 self.reset() 之后,self 的值等于 type(self)(**self.get_params(deep=False))
- save(path=None, serialization_format='pickle')[源代码]#
将序列化的自身保存到类字节对象或 (.zip) 文件中。
行为:如果
path
是 None,则返回内存中的序列化自身;如果path
是一个文件位置,则将自身存储在该位置作为一个 zip 文件。保存的文件是包含以下内容的zip文件:_metadata - 包含自身的类,即 type(self) _obj - 序列化的自身。此类使用默认的序列化(pickle)。
- 参数:
- 路径无或文件位置(字符串或路径)
如果为 None,则将 self 保存到内存对象中;如果为文件位置,则将 self 保存到该文件位置。如果:
path=”estimator” 则会在当前工作目录下创建一个名为
estimator.zip
的压缩文件。path=”/home/stored/estimator” 则会在/home/stored/
目录下存储一个名为estimator.zip
的压缩文件。- serialization_format: str, default = “pickle”
用于序列化的模块。可用的选项是 “pickle” 和 “cloudpickle”。请注意,非默认格式可能需要安装其他软依赖项。
- 返回:
- 如果
path
为 None - 内存中序列化的 self - 如果
path
是文件位置 - 带有文件引用的 ZipFile
- 如果
- score(y, X=None, fh=None)[源代码]#
使用MAPE(非对称)对地面实况进行分数预测。
- 参数:
- ypd.Series, pd.DataFrame, 或 np.ndarray (1D 或 2D)
时间序列评分
- fhint, list, array-like 或 ForecastingHorizon, 可选 (默认=None)
预测者通过提前的步骤来预测未来的视野。
- Xpd.DataFrame,或 2D np.array,可选(默认=None)
外生时间序列用于评分,如果 self.get_tag(“X-y-must-have-same-index”),则 X.index 必须包含 y.index
- 返回:
- 分数浮动
MAPE 损失是 self.predict(fh, X) 相对于 y_test 的损失。
- set_config(**config_dict)[源代码]#
将配置标志设置为给定值。
- 参数:
- config_dictdict
配置名称 : 配置值对的字典。有效的配置、值及其含义如下所示:
- 显示str, “diagram” (默认), 或 “text”
jupyter 内核如何显示 self 的实例
“diagram” = html 盒子图表示
“text” = 字符串打印输出
- print_changed_onlybool, 默认=True
是否仅打印与默认值不同的自身参数(False),或打印所有参数名称和值(False)。不嵌套,即仅影响自身,不影响组件估计器。
- 警告str, “on” (默认), 或 “off”
是否引发警告,仅影响来自 sktime 的警告
“on” = 将引发来自 sktime 的警告
“off” = 不会从 sktime 引发警告
- 后端:并行str, 可选, 默认=”None”
在广播/矢量化时用于并行化的后端,可选之一
“None”: 按顺序执行循环,简单的列表推导
“loky”, “multiprocessing” 和 “threading”: 使用
joblib.Parallel
“joblib”:自定义和第三方
joblib
后端,例如spark
“dask”: 使用
dask
,需要在环境中安装dask
包
- 后端:并行:参数dict, 可选, 默认={} (未传递参数)
传递给并行化后端的附加参数作为配置。有效键取决于
backend:parallel
的值:“None”: 没有额外参数,
backend_params
被忽略“loky”, “multiprocessing” 和 “threading”: 默认的
joblib
后端 任何有效的joblib.Parallel
键都可以在这里传递,例如n_jobs
,除了backend
直接由backend
控制。如果未传递n_jobs
,它将默认为-1
,其他参数将默认为joblib
的默认值。“joblib”:自定义和第三方
joblib
后端,例如spark
。任何joblib.Parallel
的有效键都可以在这里传递,例如n_jobs
,在这种情况下,backend
必须作为backend_params
的键传递。如果未传递n_jobs
,它将默认为-1
,其他参数将默认为joblib
的默认值。“dask”: 任何
dask.compute
的有效键都可以传递,例如scheduler
- 记住数据bool, 默认=True
是否在 fit 中存储 self._X 和 self._y,并在 update 中更新。如果为 True,则存储并更新 self._X 和 self._y。如果为 False,则不存储和更新 self._X 和 self._y。这在使用 save 时减少了序列化大小,但 update 将默认执行“不操作”而不是“重新拟合所有已见数据”。
- 返回:
- self对自身的引用。
注释
更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。
- set_params(**params)[源代码]#
设置此对象的参数。
该方法适用于简单估计器以及复合对象。参数键字符串
<component>__<parameter>
可用于复合对象,即包含其他对象的对象,以访问组件<component>
中的<parameter>
。如果没有<component>__
,字符串<parameter>
也可以使用,前提是这使得引用明确,例如,没有两个组件的参数名称是<parameter>
。- 参数:
- **参数dict
BaseObject 参数,键必须是
<组件>__<参数>
字符串。如果 get_params 键中唯一,__ 后缀可以别名完整字符串。
- 返回:
- self引用自身(在参数设置之后)
- set_random_state(random_state=None, deep=True, self_policy='copy')[源代码]#
设置 random_state 伪随机种子参数为 self。
通过
estimator.get_params
查找名为random_state
的参数,并通过set_params
将它们设置为由random_state
派生的整数。这些整数通过sample_dependent_seed
的链哈希采样得到,并保证种子随机生成器的伪随机独立性。根据
self_policy
应用于estimator
中的random_state
参数,并且仅当deep=True
时,应用于剩余的组件估计器。注意:即使
self
没有random_state
,或者没有任何组件有random_state
参数,也会调用set_params
。因此,set_random_state
将重置任何scikit-base
估计器,即使那些没有random_state
参数的估计器。- 参数:
- random_stateint, RandomState 实例或 None, 默认=None
伪随机数生成器,用于控制随机整数的生成。传递 int 以在多次函数调用中获得可重复的输出。
- 深度bool, 默认=True
是否在子估计器中设置随机状态。如果为 False,则仅设置
self
的random_state
参数(如果存在)。如果为 True,则还会设置子估计器中的random_state
参数。- self_policystr, 可选值为 {“copy”, “keep”, “new”}, 默认值为 “copy”
“复制” :
estimator.random_state
被设置为输入的random_state
“保持”:
estimator.random_state
保持不变“new” :
estimator.random_state
被设置为一个新随机状态,
源自输入
random_state
,并且通常与它不同
- 返回:
- self自我引用
- set_tags(**tag_dict)[源代码]#
将动态标签设置为给定值。
- 参数:
- **标签字典dict
标签名称:标签值对的字典。
- 返回:
- 自我
自我引用。
注释
通过在 tag_dict 中设置标签值,将对象状态更改为 self 中的动态标签。
- update(y, X=None, update_params=True)[源代码]#
更新截止值,并可选地更新拟合参数。
如果没有实现特定的估计器更新方法,默认的回退方式如下:
update_params=True
: 拟合到目前为止的所有观测数据update_params=False
: 更新截止并仅记住数据
- 状态要求:
需要状态为“已拟合”,即
self.is_fitted=True
。
自身访问:
以“_”结尾的拟合模型属性。
self.cutoff
,self.is_fitted
写给自己:
将
self.cutoff
更新为在y
中看到的最新索引。如果
update_params=True
,则更新以 “_” 结尾的拟合模型属性。
- 参数:
- y : 以
sktime
兼容数据容器格式表示的时间序列。时间序列在 用于更新预测器的时间序列。
sktime
中的单个数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype。Series
类型 = 单个时间序列,常规预测。pd.DataFrame
、pd.Series
或 ``np.ndarray``(1D 或 2D)Panel
类型 = 时间序列集合,全局/面板预测。pd.DataFrame
带有 2 级行MultiIndex
(实例, 时间)
,3D np.ndarray
(实例, 变量, 时间)
,list
类型的Series
pd.DataFrame
Hierarchical
类型 = 分层集合,用于分层预测。pd.DataFrame
带有3个或更多级别的行MultiIndex
(hierarchy_1, ..., hierarchy_n, time)
有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程
examples/01_forecasting.ipynb
- X :
sktime
兼容格式的时间序列,可选(默认=None)。时间序列在 用于更新模型拟合的外生时间序列应与
y
具有相同 scitype`(``Series`、Panel
或Hierarchical
)。如果self.get_tag("X-y-must-have-same-index")
,则X.index
必须包含y.index
。- 更新参数bool, 可选 (默认=True)
是否应更新模型参数。如果
False
,则仅更新截止值,模型参数(例如,系数)不会更新。
- y : 以
- 返回:
- self自我引用
- update_predict(y, cv=None, X=None, update_params=True, reset_forecaster=True)[源代码]#
在测试集上迭代地进行预测并更新模型。
简写形式,用于执行多个
update
/predict
执行链,基于时间分割器cv
进行数据回放。与以下相同(如果只有
y
,cv
是非默认值):self.update(y=cv.split_series(y)[0][0])
记住
self.predict()
(稍后在单个批次中返回)self.update(y=cv.split_series(y)[1][0])
记住
self.predict()
(稍后在单个批次中返回)等等
返回所有记忆中的预测
如果没有实现特定的估计器更新方法,默认的回退方式如下:
update_params=True
: 拟合到目前为止的所有观测数据update_params=False
: 更新截止并仅记住数据
- 状态要求:
需要状态为“已拟合”,即
self.is_fitted=True
。
自身访问:
以“_”结尾的拟合模型属性。
self.cutoff
,self.is_fitted
- 写入自身(除非
reset_forecaster=True
): 将
self.cutoff
更新为在y
中看到的最新索引。如果
update_params=True
,则更新以 “_” 结尾的拟合模型属性。
如果
reset_forecaster=True
,则不更新状态。- 参数:
- y : 以
sktime
兼容数据容器格式表示的时间序列。时间序列在 用于更新预测器的时间序列。
sktime
中的单个数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype。Series
类型 = 单个时间序列,常规预测。pd.DataFrame
、pd.Series
或 ``np.ndarray``(1D 或 2D)Panel
类型 = 时间序列集合,全局/面板预测。pd.DataFrame
带有 2 级行MultiIndex
(实例, 时间)
,3D np.ndarray
(实例, 变量, 时间)
,list
类型的Series
pd.DataFrame
Hierarchical
类型 = 分层集合,用于分层预测。pd.DataFrame
带有3个或更多级别的行MultiIndex
(hierarchy_1, ..., hierarchy_n, time)
有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程
examples/01_forecasting.ipynb
- cv继承自 BaseSplitter 的时间交叉验证生成器,可选
例如,
SlidingWindowSplitter
或ExpandingWindowSplitter
;默认 = ExpandingWindowSplitter 且initial_window=1
,默认情况下,y/X 中的单个数据点被逐个添加并进行预测,initial_window = 1
,step_length = 1
和fh = 1
- Xsktime 兼容格式的时间序列,可选(默认=None)
用于更新和预测的外生时间序列 应与
fit
中的y
具有相同的科学类型(Series
、Panel
或Hierarchical
)。如果self.get_tag("X-y-must-have-same-index")
,则X.index
必须包含fh
索引引用。- 更新参数bool, 可选 (默认=True)
是否应更新模型参数。如果
False
,则仅更新截止值,模型参数(例如,系数)不会更新。- reset_forecasterbool, 可选 (默认=True)
如果为真,将不会改变预测器的状态,即,更新/预测序列在副本上运行,并且截止点、模型参数、数据内存的自身状态不会改变
如果为 False,将在运行 update/predict 序列时更新 self,就像直接调用 update/predict 一样
- y : 以
- 返回:
- y_pred对象,用于从多个分割批次中汇总点预测
格式取决于对(截止,绝对水平)预测总体
如果绝对地平线点的集合是唯一的:类型是 sktime 兼容数据容器格式的时间序列 输出中抑制截止点 与最近传递的 y 具有相同的类型:Series、Panel、Hierarchical 科学类型,相同格式(见上文)
如果绝对地平线点的集合不是唯一的:类型是 pandas DataFrame,行和列索引是时间戳 行索引对应于从列索引预测的截止点 列索引对应于预测的绝对地平线 条目是从行索引预测的列索引的点预测 如果在该(截止,地平线)对上没有进行预测,则条目为 nan
- update_predict_single(y=None, fh=None, X=None, update_params=True)[源代码]#
使用新数据更新模型并进行预测。
此方法对于在单一步骤中更新和进行预测非常有用。
如果没有实现特定的估计器更新方法,默认的回退操作是先更新,然后预测。
- 状态要求:
需要状态为“已拟合”。
- 自身访问:
以“_”结尾的拟合模型属性。指向已见数据的指针,self._y 和 self.X self.cutoff, self._is_fitted 如果 update_params=True,则以“_”结尾的模型属性。
- 写给自己:
通过追加行来更新 self._y 和 self._X 为
y
和X
。将 self.cutoff 和 self._cutoff 更新为在y
中看到的最后一个索引。如果 update_params=True,更新以“_”结尾的拟合模型属性。
- 参数:
- y : 以
sktime
兼容数据容器格式表示的时间序列。时间序列在 用于更新预测器的时间序列。
sktime
中的单个数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype。Series
类型 = 单个时间序列,常规预测。pd.DataFrame
、pd.Series
或 ``np.ndarray``(1D 或 2D)Panel
类型 = 时间序列集合,全局/面板预测。pd.DataFrame
带有 2 级行MultiIndex
(实例, 时间)
,3D np.ndarray
(实例, 变量, 时间)
,list
类型的Series
pd.DataFrame
Hierarchical
类型 = 分层集合,用于分层预测。pd.DataFrame
带有3个或更多级别的行MultiIndex
(hierarchy_1, ..., hierarchy_n, time)
有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程
examples/01_forecasting.ipynb
- fh : int, list, np.array 或
ForecastingHorizon
,可选(默认=None)int, list, np.array 或 预测时间范围编码了要预测的时间戳。如果已经在
fit
中传递,则不应传递。如果在 fit 中未传递,则必须传递,不可选。- Xsktime 兼容格式的时间序列,可选(默认=None)
用于更新和预测的外生时间序列 应与
fit
中的y
具有相同的科学类型(Series
、Panel
或Hierarchical
)。如果self.get_tag("X-y-must-have-same-index")
,则X.index
必须包含fh
索引引用。- 更新参数bool, 可选 (默认=True)
是否应更新模型参数。如果
False
,则仅更新截止值,模型参数(例如,系数)不会更新。
- y : 以
- 返回:
- y_predsktime 兼容数据容器格式中的时间序列
在
fh
处的点预测,索引与fh
相同。y_pred
与最近传递的y
具有相同类型:Series
、Panel
、Hierarchical
科学类型,格式相同(见上文)