ShapeDTW#

class ShapeDTW(n_neighbors=1, subsequence_length=30, shape_descriptor_function='raw', shape_descriptor_functions=None, metric_params=None)[源代码][源代码]#

ShapeDTW 分类器。

ShapeDTW[1] 的工作原理是首先提取一组子序列,这些子序列描述了时间序列中每个数据点周围的局部邻域。然后将这些子序列传递给一个形状描述符函数,该函数将这些局部邻域转换为新的表示形式。这种新的表示形式随后被送入DTW与1-NN中。

参数:
n_neighborsint, int, 设置 knn 的 k 值(默认 =1)。
子序列长度int, 定义长度

子序列(默认=sqrt(n_时间点))。

形状描述函数string, 定义了要描述的函数

子序列集合(默认 = ‘raw’)。

可能的形状描述符函数如下:
  • ‘原始’使用原始子序列作为

    形状描述函数。

    • params = None

  • ‘paa’使用 PAA 作为形状描述符函数。
    • params = num_intervals_paa (默认值=8)

  • ‘dwt’使用 DWT(离散小波变换)

    作为形状描述函数。

    • params = num_levels_dwt (默认=3)

  • ‘斜率’使用每个子序列的梯度

    通过总最小二乘回归拟合为形状描述函数。

    • params = num_intervals_slope (默认值=8)

  • ‘导数’使用每个子序列的导数

    作为形状描述函数。

    • params = None

  • ‘hog1d’使用一个梯度直方图

    将维度作为形状描述函数。

    • params = num_intervals_hog1d

      (默认值=2)

      = num_bins_hod1d

      (默认=8)

      = scaling_factor_hog1d

      (默认值=0.1)

  • ‘复合’使用两种形状的组合

    描述符同时。

    • params = 权重因子
      (默认=无)

      定义如何缩放形状描述符的值。如果没有给定值,则通过训练数据上的10倍交叉验证来调整此值。

形状描述符函数字符串列表,仅在以下情况下适用:

shape_descriptor_function 设置为 ‘compound’。同时使用一个形状描述符函数列表。(默认 = [‘raw’,’derivative’])

metric_params度量参数的字典

(默认 = None)。

属性:
is_fitted

是否已调用 fit

注释

[1]

赵家平和Laurent Itti,“shapeDTW: 形状动态时间规整”,模式识别,74,第171-184页,2018年 http://www.sciencedirect.com/science/article/pii/S0031320317303710,

示例

>>> from sktime.classification.distance_based import ShapeDTW
>>> from sktime.datasets import load_unit_test  
>>> X_train, y_train = load_unit_test(split="train")  
>>> X_test, y_test = load_unit_test(split="test")  
>>> clf = ShapeDTW(n_neighbors=1,
...     subsequence_length=30,
...     shape_descriptor_function="raw",
...     shape_descriptor_functions=None,
...     metric_params=None,
... )  
>>> clf.fit(X_train, y_train)  
ShapeDTW(...)
>>> y_pred = clf.predict(X_test)  

方法

check_is_fitted()

检查估计器是否已被拟合。

clone()

获取一个具有相同超参数的对象副本。

clone_tags(estimator[, tag_names])

从另一个估计器克隆标签作为动态覆盖。

create_test_instance([parameter_set])

如果可能,构造 Estimator 实例。

create_test_instances_and_names([parameter_set])

创建所有测试实例的列表及其名称列表。

fit(X, y)

拟合时间序列分类器到训练数据。

fit_predict(X, y[, cv, change_state])

拟合并预测X中序列的标签。

fit_predict_proba(X, y[, cv, change_state])

拟合并预测X中序列的标签概率。

get_class_tag(tag_name[, tag_value_default])

获取类标签的值。

get_class_tags()

从类及其所有父类中获取类标签。

get_config()

获取 self 的配置标志

get_fitted_params([deep])

获取拟合参数。

get_param_defaults()

获取对象的参数默认值。

get_param_names([sort])

获取对象的参数名称。

get_params([deep])

获取此对象的参数值字典。

get_tag(tag_name[, tag_value_default, ...])

从估计器类获取标签值和动态标签覆盖。

get_tags()

从估计器类和动态标签覆盖中获取标签。

get_test_params([parameter_set])

返回估计器的测试参数设置。

is_composite()

检查对象是否由其他 BaseObjects 组成。

load_from_path(serial)

从文件位置加载对象。

load_from_serial(serial)

从序列化的内存容器中加载对象。

predict(X)

预测X中序列的标签。

predict_proba(X)

预测X中序列的标签概率。

reset()

将对象重置为初始化后的干净状态。

save([path, serialization_format])

将序列化的自身保存到类字节对象或 (.zip) 文件中。

score(X, y)

在X上将预测标签与真实标签进行对比评分。

set_config(**config_dict)

将配置标志设置为给定值。

set_params(**params)

设置此对象的参数。

set_random_state([random_state, deep, ...])

为 self 设置 random_state 伪随机种子参数。

set_tags(**tag_dict)

将动态标签设置为给定值。

check_is_fitted()[源代码]#

检查估计器是否已被拟合。

引发:
NotFittedError

如果估计器尚未拟合。

clone()[源代码]#

获取一个具有相同超参数的对象副本。

克隆是一个在初始化后状态下的不同对象,没有共享引用。此函数等同于返回 self 的 sklearn.clone。

引发:
如果克隆不符合规范,由于 __init__ 存在错误,将引发 RuntimeError。

注释

如果成功,值等于 type(self)(**self.get_params(deep=False))

clone_tags(estimator, tag_names=None)[源代码]#

从另一个估计器克隆标签作为动态覆盖。

参数:
估计器继承自 BaseEstimator 的估计器
标签名称str 或 str 列表,默认 = None

要克隆的标签名称。如果为 None,则使用估计器中的所有标签作为 tag_names

返回:
自我

自我引用。

注释

通过在 tag_set 中设置来自估计器的标签值,更改对象状态为动态标签。

classmethod create_test_instance(parameter_set='default')[源代码]#

如果可能,构造 Estimator 实例。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
实例使用默认参数的类实例

注释

get_test_params 可以返回字典或字典列表。此函数获取 get_test_params 返回的第一个或单个字典,并使用该字典构建对象。

classmethod create_test_instances_and_names(parameter_set='default')[源代码]#

创建所有测试实例的列表及其名称列表。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
objscls 的实例列表

第 i 个实例是 cls(**cls.get_test_params()[i])

名称list of str, 与 objs 长度相同

第 i 个元素是测试中第 i 个 obj 实例的名称,约定为 {cls.__name__}-{i},如果存在多个实例,否则为 {cls.__name__}。

fit(X, y)[源代码]#

拟合时间序列分类器到训练数据。

状态变化:

将状态更改为“已拟合”。

写给自己:

将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 类型

时间序列以拟合估计器。

可以是任何 Panel 类型科学类型 ,例如:

  • pd-multiindex: 带有列 = 变量,索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array(任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

ysktime 兼容的表格数据容器,表格科学类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合。第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame

返回:
self自我引用。
fit_predict(X, y, cv=None, change_state=True)[源代码]#

拟合并预测X中序列的标签。

用于生成样本内预测和交叉验证的样本外预测的便捷方法。

如果 change_state=True,则写入自身:

将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。

如果 change_state=False,则不更新状态。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 类型

时间序列以拟合并预测标签。

可以是任何 Panel 类型科学类型 ,例如:

  • pd-multiindex: 带有列 = 变量,索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array(任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

ysktime 兼容的表格数据容器,表格科学类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合。第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame

cvNone, int, 或 sklearn 交叉验证对象,可选,默认=None
  • None : 预测是在样本内进行的,等同于 fit(X, y).predict(X)

  • cv : 预测等同于 fit(X_train, y_train).predict(X_test),其中多个 X_trainy_trainX_test 是从 cv 折叠中获得的。返回的 y 是所有测试折叠预测的并集,cv 测试折叠必须不相交。

  • int : 等同于 cv=KFold(cv, shuffle=True, random_state=x),即,k折交叉验证的样本外预测,其中 random_state x 如果存在则从 self 获取,否则 x=None

change_statebool, 可选 (默认=True)
  • 如果为 False,将不会改变分类器的状态,即,fit/predict 序列在副本上运行,self 不会改变

  • 如果为真,将使自身适应完整的 X 和 y,最终状态将等同于运行 fit(X, y)

返回:
y_pred : sktime 兼容的表格数据容器,属于 Table 科学类型sktime 兼容的表格数据容器,属于 Table

预测的类别标签

1D 可迭代对象,形状为 [n_instances],或 2D 可迭代对象,形状为 [n_instances, n_dimensions]。

0-th 索引对应于 X 中的实例索引,1-st 索引(如果适用)对应于 X 中的多输出向量索引。

1D np.npdarray,如果 y 是单变量(一维);否则,与 fit 中传入的 y 类型相同

fit_predict_proba(X, y, cv=None, change_state=True)[源代码]#

拟合并预测X中序列的标签概率。

用于生成样本内预测和交叉验证的样本外预测的便捷方法。

如果 change_state=True,则写入自身:

将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。

如果 change_state=False,则不更新状态。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 类型

时间序列以拟合并预测标签。

可以是任何 Panel 类型科学类型 ,例如:

  • pd-multiindex: 带有列 = 变量,索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array(任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

ysktime 兼容的表格数据容器,表格科学类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合。第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame

cvNone, int, 或 sklearn 交叉验证对象,可选,默认=None
  • None : 预测是在样本内进行的,等同于 fit(X, y).predict(X)

  • cv : 预测等同于 fit(X_train, y_train).predict(X_test),其中多个 X_trainy_trainX_test 是从 cv 折叠中获得的。返回的 y 是所有测试折叠预测的并集,cv 测试折叠必须不相交。

  • int : 等同于 cv=KFold(cv, shuffle=True, random_state=x),即,k折交叉验证的样本外预测,其中 random_state x 如果存在则从 self 获取,否则 x=None

change_statebool, 可选 (默认=True)
  • 如果为 False,将不会改变分类器的状态,即,fit/predict 序列在副本上运行,self 不会改变

  • 如果为真,将使自身适应完整的 X 和 y,最终状态将等同于运行 fit(X, y)

返回:
y_pred形状为 [n_instances, n_classes] 的二维 np.array,类型为 int

预测的类别标签概率 0-th 索引对应于 X 中的实例索引 1-st 索引对应于类别索引,顺序与 self.classes_ 中的顺序相同 条目是预测的类别概率,总和为 1

classmethod get_class_tag(tag_name, tag_value_default=None)[源代码]#

获取类标签的值。

不返回在实例上定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。

参数:
标签名称str

标签值的名称。

tag_value_default任何

如果未找到标签,则使用默认/回退值。

返回:
标签值

self 中 tag_name 标签的值。如果未找到,则返回 tag_value_default

classmethod get_class_tags()[源代码]#

从类及其所有父类中获取类标签。

从 _tags 类属性中检索标签:值对。不返回在实例上通过 set_tags 或 clone_tags 设置的动态标签信息。

返回:
collected_tagsdict

类标签名称字典:标签值对。通过嵌套继承从 _tags 类属性中收集。

get_config()[源代码]#

获取 self 的配置标志

返回:
config_dictdict

配置名称 : 配置值对的字典。从 _config 类属性通过嵌套继承收集,然后是 _config_dynamic 对象属性的任何覆盖和新标签。

get_fitted_params(deep=True)[源代码]#

获取拟合参数。

状态要求:

需要状态为“已拟合”。

参数:
深度bool, 默认=True

是否返回组件的拟合参数。

  • 如果为真,将返回一个参数名称 : 值的字典,包括此对象的可拟合组件的拟合参数(= BaseEstimator 值的参数)。

  • 如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的拟合参数。

返回:
fitted_params带有字符串键的字典

拟合参数的字典,paramname : paramvalue 键值对包括:

  • always: 此对象的所有拟合参数,通过 get_param_names 获取的值是该键对应的拟合参数值,属于此对象。

  • 如果 deep=True,还包含组件参数的键/值对,组件参数被索引为 [componentname]__[paramname],所有 componentname 的参数都以其值作为 paramname 出现。

  • 如果 deep=True,还包含任意层级的组件递归,例如 [componentname]__[componentcomponentname]__[paramname] 等。

classmethod get_param_defaults()[源代码]#

获取对象的参数默认值。

返回:
default_dict: dict[str, Any]

键是 cls 中在 __init__ 中定义了默认值的所有参数,值是 __init__ 中定义的默认值。

classmethod get_param_names(sort=True)[源代码]#

获取对象的参数名称。

参数:
排序bool, 默认=True

是否按字母顺序返回参数名称(True),或者按它们在类 __init__ 中出现的顺序返回(False)。

返回:
param_names: list[str]

cls 的参数名称列表。如果 sort=False,则按它们在类 __init__ 中出现的顺序排列。如果 sort=True,则按字母顺序排列。

get_params(deep=True)[源代码]#

获取此对象的参数值字典。

参数:
深度bool, 默认=True

是否返回组件的参数。

  • 如果为 True,将返回此对象的参数名称 : 值的字典,包括组件的参数(= 值为 BaseObject 的参数)。

  • 如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的参数。

返回:
参数带有字符串键的字典

参数的字典,paramname : paramvalue 键值对包括:

  • 总是:此对象的所有参数,通过 get_param_names 值是该键的参数值,此对象的值总是与构造时传递的值相同。

  • 如果 deep=True,还包含组件参数的键/值对,组件的参数被索引为 [componentname]__[paramname],所有 componentname 的参数都以其值的形式显示为 paramname

  • 如果 deep=True,还包含任意层级的组件递归,例如,[componentname]__[componentcomponentname]__[paramname] 等。

get_tag(tag_name, tag_value_default=None, raise_error=True)[源代码]#

从估计器类获取标签值和动态标签覆盖。

参数:
标签名称str

要检索的标签名称

tag_value_default任何类型,可选;默认=None

如果未找到标签,则使用默认/回退值

raise_error布尔

当未找到标签时是否引发 ValueError

返回:
标签值任何

在 self 中 tag_name 标签的值。如果未找到,如果 raise_error 为 True,则返回错误,否则返回 tag_value_default

引发:
如果 raise_error 为 True,即如果 tag_name 不在其中,则引发 ValueError。
self.get_tags().keys()
get_tags()[源代码]#

从估计器类和动态标签覆盖中获取标签。

返回:
collected_tagsdict

标签名称 : 标签值对的字典。通过嵌套继承收集自 _tags 类属性,然后是 _tags_dynamic 对象属性的任何覆盖和新标签。

classmethod get_test_params(parameter_set='default')[源代码][源代码]#

返回估计器的测试参数设置。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 "default" 集。

返回:
参数字典或字典列表,默认 = {}

创建类的测试实例的参数 每个字典都是用于构造一个“有趣的”测试实例的参数,即 MyClass(**params)MyClass(**params[i]) 创建一个有效的测试实例。create_test_instance 使用 params 中的第一个(或唯一一个)字典

is_composite()[源代码]#

检查对象是否由其他 BaseObjects 组成。

复合对象是一个包含对象的对象,作为参数。在实例上调用,因为这可能因实例而异。

返回:
composite: bool

一个对象是否具有任何值为 BaseObjects 的参数。

property is_fitted[源代码]#

是否已调用 fit

classmethod load_from_path(serial)[源代码]#

从文件位置加载对象。

参数:
串行ZipFile(path).open(“object”) 的结果
返回:
反序列化自身,结果输出到 path,通过 cls.save(path)
classmethod load_from_serial(serial)[源代码]#

从序列化的内存容器中加载对象。

参数:
serial : cls.save(None) 输出的第一个元素输出结果的第一个元素
返回:
反序列化自身,结果输出为 serial,来自 cls.save(None)
predict(X)[源代码]#

预测X中序列的标签。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 类型

时间序列以预测标签。

可以是任何 Panel 类型科学类型 ,例如:

  • pd-multiindex: 带有列 = 变量,索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array(任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

返回:
y_pred : sktime 兼容的表格数据容器,属于 Table 科学类型sktime 兼容的表格数据容器,属于 Table

预测的类别标签

1D 可迭代对象,形状为 [n_instances],或 2D 可迭代对象,形状为 [n_instances, n_dimensions]。

0-th 索引对应于 X 中的实例索引,1-st 索引(如果适用)对应于 X 中的多输出向量索引。

1D np.npdarray,如果 y 是单变量(一维);否则,与 fit 中传入的 y 类型相同

predict_proba(X)[源代码]#

预测X中序列的标签概率。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 类型

时间序列以预测标签。

可以是任何 Panel 类型科学类型 ,例如:

  • pd-multiindex: 带有列 = 变量,索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array(任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

返回:
y_pred形状为 [n_instances, n_classes] 的二维 np.array,类型为 int

预测的类别标签概率 0-th 索引对应于 X 中的实例索引 1-st 索引对应于类别索引,顺序与 self.classes_ 中的顺序相同 条目是预测的类别概率,总和为 1

reset()[源代码]#

将对象重置为初始化后的干净状态。

使用 reset,使用当前的超参数值(get_params 的结果)运行 __init__。这将移除任何对象属性,除了:

  • 超参数 = __init__ 的参数

  • 包含双下划线的对象属性,即字符串”__”

类和对象方法,以及类属性也不受影响。

返回:
自身

将类实例重置为干净的后初始化状态,但保留当前的超参数值。

注释

等同于 sklearn.clone 但覆盖了 self。在调用 self.reset() 之后,self 的值等于 type(self)(**self.get_params(deep=False))

save(path=None, serialization_format='pickle')[源代码]#

将序列化的自身保存到类字节对象或 (.zip) 文件中。

行为:如果 path 为 None,则返回内存中的序列化自身;如果 path 是一个文件位置,则将自身存储在该位置作为一个 zip 文件。

保存的文件是包含以下内容的zip文件:_metadata - 包含自身的类,即 type(self) _obj - 序列化的自身。此类使用默认的序列化(pickle)。

参数:
路径无或文件位置(字符串或路径)

如果为 None,则将 self 保存到内存对象中;如果为文件位置,则将 self 保存到该文件位置。如果:

path=”estimator” 那么会在当前工作目录下生成一个 zip 文件 estimator.zip。path=”/home/stored/estimator” 那么会在 /home/stored/ 目录下存储一个 zip 文件 estimator.zip

serialization_format: str, default = “pickle”

用于序列化的模块。可用的选项是 “pickle” 和 “cloudpickle”。请注意,非默认格式可能需要安装其他软依赖项。

返回:
如果 path 为 None - 内存中的序列化自身
如果 path 是文件位置 - 带有文件引用的 ZipFile
score(X, y) float[源代码]#

在X上将预测标签与真实标签进行对比评分。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 类型

时间序列以评分预测标签。

可以是任何 Panel 类型科学类型 ,例如:

  • pd-multiindex: 带有列 = 变量,索引 = pd.MultiIndex 的 pd.DataFrame,其中第一级 = 实例索引,第二级 = 时间索引

  • numpy3D: 3D np.array(任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

ysktime 兼容的表格数据容器,表格科学类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合。第 0 个索引对应于 X 中的实例索引,第 1 个索引(如果适用)对应于 X 中的多输出向量索引。支持的 sktime 类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame

返回:
浮点数,预测(X)与y的准确度得分
set_config(**config_dict)[源代码]#

将配置标志设置为给定值。

参数:
config_dictdict

配置名称 : 配置值对的字典。有效的配置、值及其含义如下所示:

显示str, “diagram” (默认), 或 “text”

jupyter 内核如何显示实例的自我

  • “diagram” = html 盒子图表示

  • “text” = 字符串打印输出

print_changed_onlybool, 默认=True

是否仅打印与默认值不同的自身参数(False),或者打印所有参数名称和值(False)。不嵌套,即仅影响自身,不影响组件估计器。

警告str, “on” (默认), 或 “off”

是否引发警告,仅影响来自 sktime 的警告

  • “on” = 将引发来自 sktime 的警告

  • “off” = 不会从 sktime 引发警告

后端:并行str, 可选, 默认=”None”

用于广播/矢量化时并行化的后端,可以是以下之一

  • “None”: 按顺序执行循环,简单的列表推导

  • “loky”、“multiprocessing” 和 “threading”:使用 joblib.Parallel

  • “joblib”:自定义和第三方 joblib 后端,例如 spark

  • “dask”: 使用 dask,需要在环境中安装 dask

backend:parallel:paramsdict, 可选, 默认={} (未传递参数)

传递给并行化后端的额外参数作为配置。有效键取决于 backend:parallel 的值:

  • “None”: 没有额外参数,backend_params 被忽略

  • “loky”, “multiprocessing” 和 “threading”: 默认的 joblib 后端 任何有效的 joblib.Parallel 键都可以在这里传递,例如 n_jobs,除了 backend 直接由 backend 控制。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 的默认值。

  • “joblib”:自定义和第三方 joblib 后端,例如 spark。任何 joblib.Parallel 的有效键都可以在这里传递,例如 n_jobs,在这种情况下,backend 必须作为 backend_params 的键传递。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 的默认值。

  • “dask”: 任何 dask.compute 的有效键都可以传递,例如 scheduler

返回:
self自我引用。

注释

更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。

set_params(**params)[源代码]#

设置此对象的参数。

该方法适用于简单估计器以及复合对象。参数键字符串 <component>__<parameter> 可用于复合对象,即包含其他对象的对象,以访问组件 <component> 中的 <parameter>。如果这使得引用明确,例如没有两个组件的参数名称相同,则也可以使用不带 <component>__ 的字符串 <parameter>

参数:
**参数dict

BaseObject 参数,键必须是 <组件>__<参数> 字符串。如果 get_params 键中唯一,__ 后缀可以别名为完整字符串。

返回:
self引用自身(在参数设置之后)
set_random_state(random_state=None, deep=True, self_policy='copy')[源代码]#

为 self 设置 random_state 伪随机种子参数。

通过 estimator.get_params 查找名为 random_state 的参数,并通过 set_params 将其设置为由 random_state 派生的整数。这些整数通过 sample_dependent_seed 的链哈希采样获得,并保证种子随机生成器的伪随机独立性。

根据 self_policy 应用于 estimator 中的 random_state 参数,并且仅当 deep=True 时,应用于剩余的组件估计器。

注意:即使 self 没有 random_state,或者没有任何组件有 random_state 参数,也会调用 set_params。因此,set_random_state 将重置任何 scikit-base 估计器,即使它们没有 random_state 参数。

参数:
random_stateint, RandomState 实例或 None, 默认=None

伪随机数生成器,用于控制随机整数的生成。传递整数以在多次函数调用中获得可重复的输出。

深度bool, 默认=True

是否在子估计器中设置随机状态。如果为 False,则仅设置 selfrandom_state 参数(如果存在)。如果为 True,则还会在子估计器中设置 random_state 参数。

self_policystr, 可选值为 {“copy”, “keep”, “new”}, 默认值=”copy”
  • “复制” : estimator.random_state 被设置为输入的 random_state

  • “保持” : estimator.random_state 保持不变

  • “new” : estimator.random_state 被设置为一个新的随机状态,

派生自输入 random_state,并且通常与它不同。

返回:
self自我引用
set_tags(**tag_dict)[源代码]#

将动态标签设置为给定值。

参数:
**标签字典dict

标签名称:标签值对的字典。

返回:
自我

自我引用。

注释

通过在 tag_dict 中设置标签值,将对象状态更改为 self 中的动态标签。