AggrDist#

class AggrDist(transformer, aggfunc=None, aggfunc_is_symm=False)[源代码][源代码]#

面板距离与表格距离聚合。

通过对表格距离矩阵应用聚合函数获得的面板距离

示例: AggrDist(ScipyDist()) 是序列之间的平均欧几里得距离

形式细节(对于实值对象,混合类型行类似):设 \(d: \mathbb{R}^k \times \mathbb{R}^{k}\rightarrow \mathbb{R}\)transformer 中的成对函数,应用于 k 维向量。设 \(f:\mathbb{R}^{n \times m}\) 为应用于 \((n \times m)\) 矩阵时的 aggfunc 函数。设 \(x_1, \dots, x_N\in \mathbb{R}^{n \times k}\)\(y_1, \dots y_M \in \mathbb{R}^{m \times k}\) 为矩阵集合,表示时间序列面板值输入 XX2,如下:\(x_i\)X 中的第 i 个实例,\(x_{i, j\ell}\)X 的第 j 个时间点,第 \ell 个变量。类似地,对于 \(y\)X2

然后,transform(X, X2) 返回一个 \((N \times M)\) 矩阵,其中 \((i, j)\)-th 元素为 \(f \left((d(x_{i, a}, y_{j, b}))_{a, b}\right)\),其中 \(x_{i, a}\) 表示 \(x_i\) 的第 \(a\) 行,而 \(y_{j, b}\) 表示 \(x_j\) 的第 \(b\) 行。

参数:
transformer: BasePairwiseTransformer scitype 的成对转换器
aggfunc: 聚合函数 (2D np.array) -> float 或 None, 可选

default = None = np.mean

aggfunc_is_symm: bool, 可选, 默认=False
聚合函数是否对称(应根据 aggfunc 设置)
即,在转置参数下不变,它总是成立。

aggfunc(matrix) = aggfunc(np.transpose(matrix))

用于快速计算结果矩阵(如果对称),如果未知,False 是确保正确性的“安全”选项。

属性:
is_fitted

是否已调用 fit

示例

时间序列之间的平均成对欧几里得距离

>>> from sktime.dists_kernels import AggrDist, ScipyDist
>>> mean_euc_tsdist = AggrDist(ScipyDist())

时间序列之间的平均成对高斯核

>>> from sklearn.gaussian_process.kernels import RBF
>>> mean_gaussian_tskernel = AggrDist(RBF())

方法

__call__(X[, X2])

计算距离/核矩阵,调用简写。

check_is_fitted()

检查估计器是否已被拟合。

clone()

获取具有相同超参数的对象的克隆。

clone_tags(estimator[, tag_names])

从另一个估计器克隆标签作为动态覆盖。

create_test_instance([parameter_set])

如果可能,构造估计器实例。

create_test_instances_and_names([parameter_set])

创建所有测试实例的列表及其名称列表。

fit([X, X2])

接口兼容的拟合方法(内部无逻辑)。

get_class_tag(tag_name[, tag_value_default])

获取类标签的值。

get_class_tags()

从类及其所有父类中获取类标签。

get_config()

获取 self 的配置标志

get_fitted_params([deep])

获取拟合参数。

get_param_defaults()

获取对象的参数默认值。

get_param_names([sort])

获取对象的参数名称。

get_params([deep])

获取此对象的参数值字典。

get_tag(tag_name[, tag_value_default, ...])

从估计器类获取标签值并动态覆盖标签。

get_tags()

从估计器类获取标签和动态标签覆盖。

get_test_params([parameter_set])

AggrDist 的测试参数

is_composite()

检查对象是否由其他 BaseObjects 组成。

load_from_path(serial)

从文件位置加载对象。

load_from_serial(serial)

从序列化的内存容器中加载对象。

reset()

将对象重置为初始化后的干净状态。

save([path, serialization_format])

将序列化的自身保存到类字节对象或 (.zip) 文件中。

set_config(**config_dict)

将配置标志设置为给定值。

set_params(**params)

设置此对象的参数。

set_random_state([random_state, deep, ...])

为 self 设置 random_state 伪随机种子参数。

set_tags(**tag_dict)

将动态标签设置为给定值。

transform(X[, X2])

计算距离/核矩阵。

transform_diag(X)

计算距离/核矩阵的对角线。

classmethod get_test_params(parameter_set='default')[源代码][源代码]#

AggrDist 的测试参数

check_is_fitted()[源代码]#

检查估计器是否已被拟合。

引发:
NotFittedError

如果估计器尚未拟合。

clone()[源代码]#

获取具有相同超参数的对象的克隆。

克隆是一个在初始化后状态下的不同对象,没有共享引用。此函数等同于返回 self 的 sklearn.clone。

引发:
如果克隆不符合规范,由于 __init__ 存在错误,将引发 RuntimeError。

注释

如果成功,值等于 type(self)(**self.get_params(deep=False))

clone_tags(estimator, tag_names=None)[源代码]#

从另一个估计器克隆标签作为动态覆盖。

参数:
估计器继承自 BaseEstimator 的估计器
标签名称str 或 str 列表, 默认 = None

要克隆的标签名称。如果为 None,则使用估计器中的所有标签作为 tag_names

返回:
自我

自我引用。

注释

通过在 tag_set 中设置来自估计器的标签值,将对象状态更改为 self 中的动态标签。

classmethod create_test_instance(parameter_set='default')[源代码]#

如果可能,构造估计器实例。

参数:
参数集str, 默认值为”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
实例使用默认参数的类实例

注释

get_test_params 可以返回字典或字典列表。此函数获取 get_test_params 返回的第一个或单个字典,并使用该字典构建对象。

classmethod create_test_instances_and_names(parameter_set='default')[源代码]#

创建所有测试实例的列表及其名称列表。

参数:
参数集str, 默认值为”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
objscls 的实例列表

第 i 个实例是 cls(**cls.get_test_params()[i])

名称list of str, 与 objs 长度相同

第 i 个元素是测试中 obj 的第 i 个实例的名称,约定为 {cls.__name__}-{i},如果存在多个实例,否则为 {cls.__name__}。

fit(X=None, X2=None)[源代码]#

接口兼容的拟合方法(内部无逻辑)。

classmethod get_class_tag(tag_name, tag_value_default=None)[源代码]#

获取类标签的值。

不返回在实例上定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。

参数:
标签名称str

标签值的名称。

tag_value_default任何

如果未找到标签,则使用默认/回退值。

返回:
标签值

self 中 tag_name 标签的值。如果未找到,则返回 tag_value_default

classmethod get_class_tags()[源代码]#

从类及其所有父类中获取类标签。

从 _tags 类属性中检索标签:值对。不返回从实例中定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。

返回:
collected_tagsdict

类标签名称字典:标签值对。通过嵌套继承从 _tags 类属性中收集。

get_config()[源代码]#

获取 self 的配置标志

返回:
config_dictdict

配置名称 : 配置值对的字典。从 _config 类属性通过嵌套继承收集,然后是 _config_dynamic 对象属性的任何覆盖和新标签。

get_fitted_params(deep=True)[源代码]#

获取拟合参数。

状态要求:

需要状态为“已拟合”。

参数:
深度bool, 默认=True

是否返回组件的拟合参数。

  • 如果为 True,将返回此对象的参数名称 : 值的字典,包括可拟合组件的拟合参数(= 值为 BaseEstimator 的参数)。

  • 如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的拟合参数。

返回:
fitted_params带有字符串键的字典

拟合参数的字典,paramname : paramvalue 键值对包括:

  • 总是:此对象的所有拟合参数,通过 get_param_names 获取的值是该键对应的拟合参数值,属于此对象。

  • 如果 deep=True,还包含组件参数的键/值对,组件参数按 [componentname]__[paramname] 索引,所有 componentname 的参数都以其值作为 paramname 出现。

  • 如果 deep=True,还包含任意级别的组件递归,例如,[componentname]__[componentcomponentname]__[paramname] 等。

classmethod get_param_defaults()[源代码]#

获取对象的参数默认值。

返回:
default_dict: dict[str, Any]

键是 cls 中所有在 __init__ 中定义了默认值的参数,值是 __init__ 中定义的默认值。

classmethod get_param_names(sort=True)[源代码]#

获取对象的参数名称。

参数:
排序bool, 默认=True

是否按字母顺序返回参数名称(True),或按它们在类 __init__ 中出现的顺序返回(False)。

返回:
param_names: list[str]

cls 的参数名称列表。如果 sort=False,则按它们在类 __init__ 中出现的顺序排列。如果 sort=True,则按字母顺序排列。

get_params(deep=True)[源代码]#

获取此对象的参数值字典。

参数:
深度bool, 默认=True

是否返回组件的参数。

  • 如果为真,将返回此对象的参数名称 : 值的字典,包括组件的参数(= BaseObject 值的参数)。

  • 如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的参数。

返回:
参数带有字符串键的字典

参数字典,paramname : paramvalue 键值对包括:

  • 总是:此对象的所有参数,通过 get_param_names 获取的值是该键的参数值,此对象的值始终与构造时传递的值相同。

  • 如果 deep=True,还包含组件参数的键/值对,组件的参数被索引为 [componentname]__[paramname],所有 componentname 的参数都以其值作为 paramname 出现。

  • 如果 deep=True,还包含任意层级的组件递归,例如,[componentname]__[componentcomponentname]__[paramname],等等。

get_tag(tag_name, tag_value_default=None, raise_error=True)[源代码]#

从估计器类获取标签值并动态覆盖标签。

参数:
标签名称str

要检索的标签名称

tag_value_default任何类型,可选;默认=None

如果未找到标签,则使用默认/回退值

raise_error布尔

当未找到标签时是否引发 ValueError

返回:
tag_value任何

self 中 tag_name 标签的值。如果未找到,如果 raise_error 为 True,则返回错误,否则返回 tag_value_default

引发:
如果 raise_error 为 True,即如果 tag_name 不在其中,则引发 ValueError
self.get_tags().keys()
get_tags()[源代码]#

从估计器类获取标签和动态标签覆盖。

返回:
collected_tagsdict

标签名称 : 标签值对的字典。通过嵌套继承从 _tags 类属性中收集,然后从 _tags_dynamic 对象属性中覆盖和新标签。

is_composite()[源代码]#

检查对象是否由其他 BaseObjects 组成。

复合对象是一个包含对象的对象,作为参数。在实例上调用,因为这可能因实例而异。

返回:
composite: bool

一个对象是否具有任何值为 BaseObjects 的参数。

property is_fitted[源代码]#

是否已调用 fit

classmethod load_from_path(serial)[源代码]#

从文件位置加载对象。

参数:
串行ZipFile(path).open(“object”) 的结果
返回:
反序列化自身,结果输出到 path,通过 cls.save(path)
classmethod load_from_serial(serial)[源代码]#

从序列化的内存容器中加载对象。

参数:
serial : cls.save(None) 输出的第一个元素输出中的第一个元素
返回:
反序列化自身,产生输出 serial,来自 cls.save(None)
reset()[源代码]#

将对象重置为初始化后的干净状态。

使用 reset,使用当前的超参数值(get_params 的结果)运行 __init__。这将移除任何对象属性,除了:

  • 超参数 = __init__ 的参数

  • 包含双下划线的对象属性,即字符串”__”

类和对象方法,以及类属性也不受影响。

返回:
自身

将类实例重置为干净的初始化后状态,但保留当前的超参数值。

注释

等同于 sklearn.clone,但会覆盖 self。在调用 self.reset() 之后,self 的值等于 type(self)(**self.get_params(deep=False))

save(path=None, serialization_format='pickle')[源代码]#

将序列化的自身保存到类字节对象或 (.zip) 文件中。

行为:如果 path 是 None,则返回内存中的序列化自身;如果 path 是一个文件位置,则将自身存储在该位置作为一个 zip 文件。

保存的文件是包含以下内容的zip文件:_metadata - 包含自身的类,即 type(self) _obj - 序列化的自身。此类使用默认的序列化(pickle)。

参数:
路径无或文件位置(字符串或路径)

如果为 None,则将 self 保存到内存对象中;如果为文件位置,则将 self 保存到该文件位置。如果:

path=”estimator” 则会在当前工作目录下生成一个名为 estimator.zip 的压缩文件。path=”/home/stored/estimator” 则会在 /home/stored/ 目录下存储一个名为 estimator.zip 的压缩文件。

serialization_format: str, default = “pickle”

用于序列化的模块。可用的选项是 “pickle” 和 “cloudpickle”。请注意,非默认格式可能需要安装其他软依赖。

返回:
如果 path 为 None - 内存中序列化的自身
如果 path 是文件位置 - 带有文件引用的 ZipFile
set_config(**config_dict)[源代码]#

将配置标志设置为给定值。

参数:
config_dictdict

配置名称 : 配置值对的字典。有效的配置、值及其含义如下所示:

显示str, “diagram” (默认), 或 “text”

jupyter 内核如何显示 self 的实例

  • “diagram” = html 盒子图表示

  • “text” = 字符串打印输出

print_changed_onlybool, 默认=True

是否仅打印与默认值不同的自身参数(False),或打印所有参数名称和值(False)。不嵌套,即仅影响自身,不影响组件估计器。

警告str, “on” (默认), 或 “off”

是否引发警告,仅影响来自 sktime 的警告

  • “on” = 将引发来自 sktime 的警告

  • “off” = 不会从 sktime 引发警告

后端:并行str, 可选, 默认=”None”

在广播/矢量化时用于并行化的后端,是以下之一

  • “None”: 按顺序执行循环,简单的列表推导

  • “loky”, “multiprocessing” 和 “threading”: 使用 joblib.Parallel

  • “joblib”:自定义和第三方 joblib 后端,例如 spark

  • “dask”: 使用 dask,需要在环境中安装 dask

backend:parallel:paramsdict, 可选, 默认={} (未传递参数)

传递给并行化后端的额外参数作为配置。有效键取决于 backend:parallel 的值:

  • “None”: 没有额外参数, backend_params 被忽略

  • “loky”, “multiprocessing” 和 “threading”: 默认 joblib 后端 任何有效的 joblib.Parallel 键都可以在这里传递,例如 n_jobs,除了 backend 直接由 backend 控制。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 默认值。

  • “joblib”: 自定义和第三方 joblib 后端,例如 spark。任何 joblib.Parallel 的有效键都可以在这里传递,例如 n_jobs,在这种情况下,backend 必须作为 backend_params 的键传递。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 的默认值。

  • “dask”:任何 dask.compute 的有效键都可以传递,例如,scheduler

返回:
self对自身的引用。

注释

更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic 中。

set_params(**params)[源代码]#

设置此对象的参数。

该方法适用于简单的估计器以及复合对象。参数键字符串 <component>__<parameter> 可以用于复合对象,即包含其他对象的对象,以访问组件 <component> 中的 <parameter>。如果这使得引用明确,例如没有两个组件的参数名称是 <parameter>,则也可以使用不带 <component>__ 的字符串 <parameter>

参数:
**参数dict

BaseObject 参数,键必须是 <组件>__<参数> 字符串。如果 get_params 键中唯一,__ 后缀可以别名为完整字符串。

返回:
self引用自身(在参数设置之后)
set_random_state(random_state=None, deep=True, self_policy='copy')[源代码]#

为 self 设置 random_state 伪随机种子参数。

通过 estimator.get_params 查找名为 random_state 的参数,并通过 set_params 将其设置为由 random_state 派生的整数。这些整数通过 sample_dependent_seed 的链哈希采样得到,并保证种子随机生成器的伪随机独立性。

根据 self_policy 应用于 estimator 中的 random_state 参数,并且仅当 deep=True 时,应用于剩余的组件估计器。

注意:即使 self 没有 random_state,或者没有任何组件有 random_state 参数,也会调用 set_params。因此,set_random_state 将重置任何 scikit-base 估计器,即使那些没有 random_state 参数的估计器。

参数:
random_stateint, RandomState 实例或 None, 默认=None

伪随机数生成器,用于控制随机整数的生成。传递 int 以在多次函数调用中获得可重复的输出。

深度bool, 默认=True

是否在子估计器中设置随机状态。如果为 False,则仅设置 selfrandom_state 参数(如果存在)。如果为 True,则还会在子估计器中设置 random_state 参数。

self_policystr, 可选值为 {“copy”, “keep”, “new”}, 默认值为 “copy”
  • “copy” : estimator.random_state 被设置为输入的 random_state

  • “保持” : estimator.random_state 保持不变

  • “new” : estimator.random_state 被设置为一个新的随机状态,

源自输入 random_state,并且通常与它不同

返回:
self自我引用
set_tags(**tag_dict)[源代码]#

将动态标签设置为给定值。

参数:
**标签字典dict

标签名称:标签值对的字典。

返回:
自我

自我引用。

注释

通过在 tag_dict 中设置标签值,将对象状态更改为 self 中的动态标签。

transform(X, X2=None)[源代码]#

计算距离/核矩阵。

行为:返回成对距离/核矩阵

X 和 X2 之间的样本(如果未传递,则等于 X)

参数:
X系列或面板,任何支持的m类型,n个实例
要转换的数据,其Python类型如下:

系列: pd.Series, pd.DataFrame, 或 np.ndarray (1D 或 2D) 面板: 具有 2 级 MultiIndex 的 pd.DataFrame, pd.DataFrame 列表,

嵌套的 pd.DataFrame,或长/宽格式的 pd.DataFrame

受 sktime mtype 格式规范的约束,更多详情请参见

examples/AA_datatypes_and_datasets.ipynb

X2系列或面板,任何支持的 mtype,m 个实例

可选,默认值:X = X2

要转换的数据,其Python类型如下:

系列: pd.Series, pd.DataFrame, 或 np.ndarray (1D 或 2D) 面板: 具有 2 级 MultiIndex 的 pd.DataFrame, pd.DataFrame 列表,

嵌套的 pd.DataFrame,或长/宽格式的 pd.DataFrame

受 sktime mtype 格式规范的约束,更多详情请参见

examples/AA_datatypes_and_datasets.ipynb

X 和 X2 不需要具有相同的 mtype

返回:
distmat: 形状为 [n, m] 的 np.array

(i,j)-th 条目包含 X[i] 和 X2[j] 之间的距离/核

transform_diag(X)[源代码]#

计算距离/核矩阵的对角线。

行为:返回 X 中样本的距离/核矩阵的对角线

参数:
X系列或面板,任何支持的m类型,n个实例
要转换的数据,其Python类型如下:

系列: pd.Series, pd.DataFrame, 或 np.ndarray (1D 或 2D) 面板: 具有 2 级 MultiIndex 的 pd.DataFrame, pd.DataFrame 列表,

嵌套的 pd.DataFrame,或长/宽格式的 pd.DataFrame

受 sktime mtype 格式规范的约束,更多详情请参见

examples/AA_datatypes_and_datasets.ipynb

返回:
diag: 形状为 [n] 的 np.array

第 i 个条目包含 X[i] 和 X[i] 之间的距离/核