ShapeletLearningClassifierTslearn#

class ShapeletLearningClassifierTslearn(n_shapelets_per_size=None, max_iter=10000, batch_size=256, optimizer='sgd', weight_regularizer=0.0, shapelet_length=0.15, total_lengths=3, max_size=None, scale=False, verbose=0, random_state=None)[源代码][源代码]#

学习时间序列形状分类器,来自 tslearn。

直接接口到 tslearn.shapelets.shapelets.LearningShapelets

学习时间序列形状最初在 [1] 中提出。

参数:
n_shapelets_per_size: dict (默认: None)

字典,为每个形状大小(键)提供要训练的此类形状的数量(值)。如果为 None,则使用 grabocka_params_to_shapelet_size_dict,用于计算的大小是拟合时传递的最短时间序列的大小。

max_iter: int (默认: 10,000)

训练的轮数。

batch_size: int (默认: 256)

要使用的批量大小。

优化器: str 或 keras.optimizers.Optimizer (默认: “sgd”)

keras 用于训练的优化器。

weight_regularizer: float 或 None (默认: 0.)

用于训练分类(softmax)层的L2正则化器的强度。如果为0,则不执行正则化。

shapelet_length: float (默认值: 0.15)

形状的长度,以时间序列长度的分数表示。仅在 n_shapelets_per_size 为 None 时使用。

total_lengths: int (默认: 3)

不同形状长度的数量。将提取长度为 i * shapelet_length 的形状,其中 i 在 [1, total_lengths] 范围内。仅在 n_shapelets_per_size 为 None 时使用。

max_size: int 或 None (默认: None)

提供给模型的时序数据的最大尺寸。如果为 None,则设置为训练时序数据的大小(时间戳数量)。

scale: bool (默认: False)

输入数据是否应针对每个时间序列的每个特征缩放到 [0-1] 区间。此参数的默认值在 0.4 版本中设置为 False,以确保向后兼容性,但在未来版本中可能会更改。

verbose: {0, 1, 2} (默认: 0)

keras 详细级别。

random_stateint 或 None, 可选 (默认: None)

用于在打乱数据时使用的伪随机数生成器的种子。如果是整数,random_state 是随机数生成器使用的种子;如果是 None,随机数生成器是 np.random 使用的 RandomState 实例。

属性:
shapelets_numpy.ndarray 的对象数组,每个对象都是一个时间序列

时间序列形状集。

shapelets_as_time_series_形状为 (n_shapelets, sz_shp, d) 的 numpy.ndarray

其中 sz_shp 是所有形素大小的最大值 格式化为 tslearn 时间序列数据集的时间序列形素集合。

transformer_model_keras.Model

将时间序列的输入数据集转换为到学习到的shapelets的距离。

locator_model_keras.Model

返回输入数据集中每个时间序列中可以找到每个形状序列的索引(最小距离)。

模型_keras.Model

直接预测输入时间序列的类别概率。

history_dict

在拟合过程中记录的损失和指标的字典。

参考文献

[1]
  1. Grabocka 等人。学习时间序列的形状。SIGKDD 2014。

方法

check_is_fitted()

检查估计器是否已被拟合。

clone()

获取一个具有相同超参数的对象副本。

clone_tags(estimator[, tag_names])

从另一个估计器克隆标签作为动态覆盖。

create_test_instance([parameter_set])

如果可能,构造估计器实例。

create_test_instances_and_names([parameter_set])

创建所有测试实例的列表及其名称列表。

fit(X, y)

拟合时间序列分类器到训练数据。

fit_predict(X, y[, cv, change_state])

拟合并预测X中序列的标签。

fit_predict_proba(X, y[, cv, change_state])

拟合并预测X中序列的标签概率。

get_class_tag(tag_name[, tag_value_default])

获取类标签的值。

get_class_tags()

从类及其所有父类中获取类标签。

get_config()

获取 self 的配置标志

get_fitted_params([deep])

获取拟合参数。

get_param_defaults()

获取对象的参数默认值。

get_param_names([sort])

获取对象的参数名称。

get_params([deep])

获取此对象的参数值字典。

get_tag(tag_name[, tag_value_default, ...])

从估计器类获取标签值并动态覆盖标签。

get_tags()

从估计器类获取标签和动态标签覆盖。

get_test_params([parameter_set])

返回估计器的测试参数设置。

is_composite()

检查对象是否由其他 BaseObjects 组成。

load_from_path(serial)

从文件位置加载对象。

load_from_serial(serial)

从序列化的内存容器中加载对象。

predict(X)

预测X中序列的标签。

predict_proba(X)

预测 X 中序列的标签概率。

reset()

将对象重置为初始化后的干净状态。

save([path, serialization_format])

将序列化的自身保存到类字节对象或 (.zip) 文件中。

score(X, y)

在 X 上将预测标签与真实标签进行比较。

set_config(**config_dict)

将配置标志设置为给定值。

set_params(**params)

设置此对象的参数。

set_random_state([random_state, deep, ...])

设置 random_state 伪随机种子参数为 self。

set_tags(**tag_dict)

将动态标签设置为给定值。

classmethod get_test_params(parameter_set='default')[源代码][源代码]#

返回估计器的测试参数设置。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 "default" 集。

返回:
参数字典或字典列表,默认 = {}

创建类的测试实例的参数 每个字典都是用于构造一个“有趣的”测试实例的参数,即 MyClass(**params)MyClass(**params[i]) 创建一个有效的测试实例。create_test_instance 使用 params 中的第一个(或唯一一个)字典

check_is_fitted()[源代码]#

检查估计器是否已被拟合。

引发:
NotFittedError

如果估计器尚未拟合。

clone()[源代码]#

获取一个具有相同超参数的对象副本。

克隆是一个在初始化后状态下的不同对象,没有共享引用。此函数等同于返回 self 的 sklearn.clone。

引发:
如果克隆不符合规范,由于 __init__ 存在错误,将引发 RuntimeError。

注释

如果成功,值等于 type(self)(**self.get_params(deep=False))

clone_tags(estimator, tag_names=None)[源代码]#

从另一个估计器克隆标签作为动态覆盖。

参数:
估计器继承自 BaseEstimator 的估计器
标签名称str 或 str 列表, 默认 = None

要克隆的标签名称。如果为 None,则使用估计器中的所有标签作为 tag_names

返回:
自我

自我引用。

注释

通过在 tag_set 中设置来自估计器的标签值,更改对象状态为 self 中的动态标签。

classmethod create_test_instance(parameter_set='default')[源代码]#

如果可能,构造估计器实例。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
实例使用默认参数的类实例

注释

get_test_params 可以返回字典或字典列表。此函数获取 get_test_params 返回的第一个或单个字典,并使用该字典构建对象。

classmethod create_test_instances_and_names(parameter_set='default')[源代码]#

创建所有测试实例的列表及其名称列表。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
objscls 实例列表

第 i 个实例是 cls(**cls.get_test_params()[i])

名称list of str, 与 objs 长度相同

第 i 个元素是测试中第 i 个 obj 实例的名称,约定为 {cls.__name__}-{i},如果存在多个实例,否则为 {cls.__name__}。

fit(X, y)[源代码]#

拟合时间序列分类器到训练数据。

状态变化:

将状态更改为“已拟合”。

写给自己:

将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型

时间序列以拟合估计器。

可以是任何 Panel 类型科学类型 ,例如:

  • pd-multiindex: 列 = 变量, 索引 = pd.MultiIndex, 第一级 = 实例索引, 第二级 = 时间索引 的 pd.DataFrame

  • numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

ysktime 兼容的表格数据容器,表格科学类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合 0-th 索引对应于 X 中的实例索引 1-st 索引(如果适用)对应于 X 中的多输出向量索引 支持的 sktime 类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame

返回:
self自我引用。
fit_predict(X, y, cv=None, change_state=True)[源代码]#

拟合并预测X中序列的标签。

用于生成样本内预测和交叉验证的样本外预测的便捷方法。

如果 change_state=True,则写入自身:

将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。

如果 change_state=False,则不更新状态。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型

时间序列以拟合并预测标签。

可以是任何 Panel 类型科学类型 ,例如:

  • pd-multiindex: 列 = 变量, 索引 = pd.MultiIndex, 第一级 = 实例索引, 第二级 = 时间索引 的 pd.DataFrame

  • numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

ysktime 兼容的表格数据容器,表格科学类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合 0-th 索引对应于 X 中的实例索引 1-st 索引(如果适用)对应于 X 中的多输出向量索引 支持的 sktime 类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame

cvNone, int, 或 sklearn 交叉验证对象, 可选, 默认=None
  • None : 预测是在样本内进行的,等同于 fit(X, y).predict(X)

  • cv : 预测等同于 fit(X_train, y_train).predict(X_test),其中多个 X_train, y_train, X_testcv 折叠中获得。返回的 y 是所有测试折叠预测的联合,cv 测试折叠必须不相交

  • int : 等同于 cv=KFold(cv, shuffle=True, random_state=x),即,k折交叉验证的样本外预测,其中 random_state x 如果存在则从 self 获取,否则 x=None

change_statebool, 可选 (默认=True)
  • 如果为 False,将不会改变分类器的状态,即,fit/predict 序列在副本上运行,self 不会改变

  • 如果为真,将使自身适应完整的 X 和 y,最终状态将等同于运行 fit(X, y)

返回:
y_pred : sktime 兼容的表格数据容器,属于 Table 科学类型sktime 兼容的表格数据容器,属于 Table

预测的类别标签

一维可迭代对象,形状为 [n_instances],或二维可迭代对象,形状为 [n_instances, n_dimensions]。

0-th 索引对应于 X 中的实例索引,1-st 索引(如果适用)对应于 X 中的多输出向量索引。

1D np.ndarray,如果 y 是单变量(一维);否则,与 fit 中传入的 y 类型相同

fit_predict_proba(X, y, cv=None, change_state=True)[源代码]#

拟合并预测X中序列的标签概率。

用于生成样本内预测和交叉验证的样本外预测的便捷方法。

如果 change_state=True,则写入自身:

将 self.is_fitted 设置为 True。设置以 “_” 结尾的拟合模型属性。

如果 change_state=False,则不更新状态。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型

时间序列以拟合并预测标签。

可以是任何 Panel 类型科学类型 ,例如:

  • pd-multiindex: 列 = 变量, 索引 = pd.MultiIndex, 第一级 = 实例索引, 第二级 = 时间索引 的 pd.DataFrame

  • numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

ysktime 兼容的表格数据容器,表格科学类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合 0-th 索引对应于 X 中的实例索引 1-st 索引(如果适用)对应于 X 中的多输出向量索引 支持的 sktime 类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame

cvNone, int, 或 sklearn 交叉验证对象, 可选, 默认=None
  • None : 预测是在样本内进行的,等同于 fit(X, y).predict(X)

  • cv : 预测等同于 fit(X_train, y_train).predict(X_test),其中多个 X_train, y_train, X_testcv 折叠中获得。返回的 y 是所有测试折叠预测的联合,cv 测试折叠必须不相交

  • int : 等同于 cv=KFold(cv, shuffle=True, random_state=x),即,k折交叉验证的样本外预测,其中 random_state x 如果存在则从 self 获取,否则 x=None

change_statebool, 可选 (默认=True)
  • 如果为 False,将不会改变分类器的状态,即,fit/predict 序列在副本上运行,self 不会改变

  • 如果为真,将使自身适应完整的 X 和 y,最终状态将等同于运行 fit(X, y)

返回:
y_pred形状为 [n_instances, n_classes] 的二维 np.array,类型为 int

预测的类别标签概率 0-th 索引对应于 X 中的实例索引 1-st 索引对应于类别索引,顺序与 self.classes_ 中的顺序相同 条目是预测的类别概率,总和为 1

classmethod get_class_tag(tag_name, tag_value_default=None)[源代码]#

获取类标签的值。

不返回在实例上定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。

参数:
标签名称str

标签值的名称。

tag_value_default任何

如果未找到标签,则使用默认/回退值。

返回:
标签值

在 self 中 tag_name 标签的值。如果未找到,则返回 tag_value_default

classmethod get_class_tags()[源代码]#

从类及其所有父类中获取类标签。

从 _tags 类属性中检索标签:值对。不返回从实例中定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。

返回:
collected_tagsdict

类标签名称字典:标签值对。通过嵌套继承从 _tags 类属性中收集。

get_config()[源代码]#

获取 self 的配置标志

返回:
config_dictdict

配置名称 : 配置值对的字典。从 _config 类属性通过嵌套继承收集,然后从 _config_dynamic 对象属性中覆盖和新标签。

get_fitted_params(deep=True)[源代码]#

获取拟合参数。

状态要求:

需要状态为“已拟合”。

参数:
深度bool, 默认=True

是否返回组件的拟合参数。

  • 如果为 True,将返回一个包含参数名称 : 值的字典,包括可拟合组件的拟合参数(= 值为 BaseEstimator 的参数)。

  • 如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的拟合参数。

返回:
fitted_params带有字符串键的字典

拟合参数的字典,paramname : paramvalue 键值对包括:

  • always: 此对象的所有拟合参数,通过 get_param_names 获取的值是该键对应的拟合参数值,属于此对象

  • 如果 deep=True,还包含组件参数的键/值对,组件参数被索引为 [componentname]__[paramname],所有 componentname 的参数都以其值作为 paramname 出现。

  • 如果 deep=True,还包含任意层级的组件递归,例如,[componentname]__[componentcomponentname]__[paramname],等等。

classmethod get_param_defaults()[源代码]#

获取对象的参数默认值。

返回:
default_dict: dict[str, Any]

键是 cls 中在 __init__ 中定义了默认值的所有参数,值是 __init__ 中定义的默认值。

classmethod get_param_names(sort=True)[源代码]#

获取对象的参数名称。

参数:
排序bool, 默认=True

是否按字母顺序返回参数名称(True),或者按它们在类 __init__ 中出现的顺序返回(False)。

返回:
param_names: list[str]

cls 的参数名称列表。如果 sort=False,则按它们在类 __init__ 中出现的顺序排列。如果 sort=True,则按字母顺序排列。

get_params(deep=True)[源代码]#

获取此对象的参数值字典。

参数:
深度bool, 默认=True

是否返回组件的参数。

  • 如果为真,将返回此对象的参数名称 : 值的字典,包括组件的参数(= 值为 BaseObject 的参数)。

  • 如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的参数。

返回:
参数带有字符串键的字典

参数的字典,paramname : paramvalue 键值对包括:

  • 总是:此对象的所有参数,如通过 get_param_names 获取的值是该键的参数值,此对象的值始终与构造时传递的值相同。

  • 如果 deep=True,还包含组件参数的键/值对,组件的参数被索引为 [componentname]__[paramname],所有 componentname 的参数都以其值作为 paramname 出现。

  • 如果 deep=True,还包含任意级别的组件递归,例如,[componentname]__[componentcomponentname]__[paramname] 等。

get_tag(tag_name, tag_value_default=None, raise_error=True)[源代码]#

从估计器类获取标签值并动态覆盖标签。

参数:
标签名称str

要检索的标签名称

tag_value_default任何类型,可选;默认=None

如果未找到标签,则使用默认/回退值

raise_error布尔

当未找到标签时是否引发 ValueError

返回:
标签值任何

self 中 tag_name 标签的值。如果未找到,如果 raise_error 为 True,则返回错误,否则返回 tag_value_default

引发:
如果 raise_error 为 True,即如果 tag_name 不在其中,则引发 ValueError。
self.get_tags().keys()
get_tags()[源代码]#

从估计器类获取标签和动态标签覆盖。

返回:
collected_tagsdict

标签名称 : 标签值对的字典。从 _tags 类属性通过嵌套继承收集,然后是 _tags_dynamic 对象属性的任何覆盖和新标签。

is_composite()[源代码]#

检查对象是否由其他 BaseObjects 组成。

复合对象是一个包含对象的对象,作为参数。在实例上调用,因为这可能因实例而异。

返回:
composite: bool

一个对象是否有任何参数的值是 BaseObjects。

property is_fitted[源代码]#

是否已调用 fit

classmethod load_from_path(serial)[源代码]#

从文件位置加载对象。

参数:
串行ZipFile(path).open(“object”) 的结果
返回:
反序列化自身,结果输出到 path,通过 cls.save(path)
classmethod load_from_serial(serial)[源代码]#

从序列化的内存容器中加载对象。

参数:
serial : cls.save(None) 输出的第一个元素输出结果的第一个元素
返回:
反序列化自身,结果输出为 serial,来自 cls.save(None)
predict(X)[源代码]#

预测X中序列的标签。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型

时间序列以预测标签。

可以是任何 Panel 类型科学类型 ,例如:

  • pd-multiindex: 列 = 变量, 索引 = pd.MultiIndex, 第一级 = 实例索引, 第二级 = 时间索引 的 pd.DataFrame

  • numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

返回:
y_pred : sktime 兼容的表格数据容器,属于 Table 科学类型sktime 兼容的表格数据容器,属于 Table

预测的类别标签

一维可迭代对象,形状为 [n_instances],或二维可迭代对象,形状为 [n_instances, n_dimensions]。

0-th 索引对应于 X 中的实例索引,1-st 索引(如果适用)对应于 X 中的多输出向量索引。

1D np.ndarray,如果 y 是单变量(一维);否则,与 fit 中传入的 y 类型相同

predict_proba(X)[源代码]#

预测 X 中序列的标签概率。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型

时间序列以预测标签。

可以是任何 Panel 类型科学类型 ,例如:

  • pd-multiindex: 列 = 变量, 索引 = pd.MultiIndex, 第一级 = 实例索引, 第二级 = 时间索引 的 pd.DataFrame

  • numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

返回:
y_pred形状为 [n_instances, n_classes] 的二维 np.array,类型为 int

预测的类别标签概率 0-th 索引对应于 X 中的实例索引 1-st 索引对应于类别索引,顺序与 self.classes_ 中的顺序相同 条目是预测的类别概率,总和为 1

reset()[源代码]#

将对象重置为初始化后的干净状态。

使用 reset,使用当前的超参数值(get_params 的结果)运行 __init__。这将移除任何对象属性,除了:

  • 超参数 = __init__ 的参数

  • 包含双下划线的对象属性,即字符串”__”

类和对象方法,以及类属性也不受影响。

返回:
自身

类的实例重置为干净的初始化后状态,但保留当前的超参数值。

注释

等同于 sklearn.clone 但覆盖了 self。在调用 self.reset() 之后,self 的值等于 type(self)(**self.get_params(deep=False))

save(path=None, serialization_format='pickle')[源代码]#

将序列化的自身保存到类字节对象或 (.zip) 文件中。

行为:如果 path 是 None,返回一个内存中的序列化自身;如果 path 是一个文件位置,将自身存储在该位置作为一个 zip 文件。

保存的文件是包含以下内容的zip文件:_metadata - 包含自身的类,即 type(self) _obj - 序列化的自身。此类使用默认的序列化(pickle)。

参数:
路径无或文件位置(字符串或路径)

如果为 None,则将 self 保存到内存对象中;如果为文件位置,则将 self 保存到该文件位置。如果:

path=”estimator” 那么会在当前工作目录下生成一个压缩文件 estimator.zip。path=”/home/stored/estimator” 那么会在 /home/stored/ 目录下存储一个压缩文件 estimator.zip

serialization_format: str, default = “pickle”

用于序列化的模块。可用的选项是 “pickle” 和 “cloudpickle”。请注意,非默认格式可能需要安装其他软依赖。

返回:
如果 path 为 None - 内存中序列化的自身
如果 path 是文件位置 - 带有文件引用的 ZipFile
score(X, y) float[源代码]#

在 X 上将预测标签与真实标签进行比较。

参数:
Xsktime 兼容的时间序列面板数据容器,属于 Panel 科学类型

时间序列以评分预测标签。

可以是任何 Panel 类型科学类型 ,例如:

  • pd-multiindex: 列 = 变量, 索引 = pd.MultiIndex, 第一级 = 实例索引, 第二级 = 时间索引 的 pd.DataFrame

  • numpy3D: 3D np.array (任意数量的维度,等长序列),形状为 [n_instances, n_dimensions, series_length]

  • 或任何其他支持的 Panel mtype

有关mtypes的列表,请参见 datatypes.SCITYPE_REGISTER

有关规范,请参阅 examples/AA_datatypes_and_datasets.ipynb

并非所有估计器都支持具有多变量或不等长序列的面板,详情请参阅 标签参考

ysktime 兼容的表格数据容器,表格科学类型

1D 可迭代对象,形状为 [n_instances] 或 2D 可迭代对象,形状为 [n_instances, n_dimensions] 的类标签,用于拟合 0-th 索引对应于 X 中的实例索引 1-st 索引(如果适用)对应于 X 中的多输出向量索引 支持的 sktime 类型:np.ndarray(1D,2D),pd.Series,pd.DataFrame

返回:
浮点数,预测(X)与y的准确度得分
set_config(**config_dict)[源代码]#

将配置标志设置为给定值。

参数:
config_dictdict

配置名称 : 配置值对的字典。有效的配置、值及其含义如下所示:

显示str, “diagram” (默认), 或 “text”

jupyter 内核如何显示 self 的实例

  • “diagram” = html 盒子图表示

  • “text” = 字符串打印输出

print_changed_onlybool, 默认=True

是否仅打印与默认值不同的自身参数(False),或者打印所有参数名称和值(False)。不嵌套,即仅影响自身,不影响组件估计器。

警告str, “on” (默认), 或 “off”

是否引发警告,仅影响来自 sktime 的警告

  • “on” = 将引发来自 sktime 的警告

  • “off” = 不会从 sktime 引发警告

后端:并行str, 可选, 默认=”None”

在广播/矢量化时用于并行化的后端,是以下之一

  • “None”: 顺序执行循环,简单的列表推导

  • “loky”, “multiprocessing” 和 “threading”: 使用 joblib.Parallel

  • “joblib”:自定义和第三方 joblib 后端,例如 spark

  • “dask”: 使用 dask,需要在环境中安装 dask

backend:parallel:paramsdict, 可选, 默认={} (未传递参数)

传递给并行化后端的附加参数作为配置。有效键取决于 backend:parallel 的值:

  • “None”: 没有额外参数,backend_params 被忽略

  • “loky”, “multiprocessing” 和 “threading”: 默认的 joblib 后端 任何有效的 joblib.Parallel 键都可以在这里传递,例如 n_jobs,除了 backend 直接由 backend 控制。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 的默认值。

  • “joblib”:自定义和第三方 joblib 后端,例如 spark。任何 joblib.Parallel 的有效键都可以在这里传递,例如 n_jobs,在这种情况下,backend 必须作为 backend_params 的键传递。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 的默认值。

  • dask: 任何 dask.compute 的有效键都可以传递,例如,scheduler

返回:
self自我引用

注释

更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。

set_params(**params)[源代码]#

设置此对象的参数。

该方法适用于简单估计器以及复合对象。参数键字符串 <component>__<parameter> 可用于复合对象,即包含其他对象的对象,以访问组件 <component> 中的 <parameter>。如果这使得引用明确,例如没有两个组件的参数名称相同,则也可以使用不带 <component>__ 的字符串 <parameter>

参数:
**参数dict

BaseObject 参数,键必须是 <组件>__<参数> 字符串。如果 get_params 键中唯一,__ 后缀可以别名为完整字符串。

返回:
self引用自身(在参数设置之后)
set_random_state(random_state=None, deep=True, self_policy='copy')[源代码]#

设置 random_state 伪随机种子参数为 self。

通过 estimator.get_params 查找名为 random_state 的参数,并通过 set_params 将其设置为由 random_state 派生的整数。这些整数通过 sample_dependent_seed 的链式哈希采样获得,并保证种子随机生成器的伪随机独立性。

根据 self_policy 应用于 estimator 中的 random_state 参数,并且仅当 deep=True 时应用于剩余的组件估计器。

注意:即使 self 没有 random_state,或者没有任何组件有 random_state 参数,也会调用 set_params。因此,set_random_state 将重置任何 scikit-base 估计器,即使它们没有 random_state 参数。

参数:
random_stateint, RandomState 实例或 None, 默认=None

伪随机数生成器,用于控制随机整数的生成。传递整数以在多次函数调用中获得可重现的输出。

深度bool, 默认=True

是否在子估计器中设置随机状态。如果为 False,则仅设置 selfrandom_state 参数(如果存在)。如果为 True,则还会在子估计器中设置 random_state 参数。

self_policystr, 可选值为 {“copy”, “keep”, “new”}, 默认值为 “copy”
  • “复制” : estimator.random_state 被设置为输入的 random_state

  • “保持” : estimator.random_state 保持不变

  • “new” : estimator.random_state 被设置为一个新的随机状态,

派生自输入 random_state,并且通常与它不同。

返回:
self自我引用
set_tags(**tag_dict)[源代码]#

将动态标签设置为给定值。

参数:
**标签字典dict

标签名称:标签值对的字典。

返回:
自我

自我引用。

注释

通过在 tag_dict 中设置标签值,将对象状态更改为 self 中的动态标签。