Prophetverse#

class Prophetverse(changepoint_interval: int = 25, changepoint_range: float = 0.8, changepoint_prior_scale: float = 0.001, offset_prior_scale: float = 0.1, feature_transformer=None, capacity_prior_scale: float = 0.2, capacity_prior_loc: float = 1.1, noise_scale: float = 0.05, trend: str = 'linear', mcmc_samples: int = 2000, mcmc_warmup: int = 200, mcmc_chains: int = 4, inference_method: str = 'map', optimizer_name: str = 'Adam', optimizer_kwargs: dict[str, Any] | None = None, optimizer_steps: int = 100000, exogenous_effects: list | None = None, default_effect=None, scale: float | None = None, rng_key=None)[源代码][源代码]#

单变量 prophetverse 预测器 - 在 numpyro 中实现的 prophet 模型。

prophetverse 包中的 Estimatorfelipeangelimvieira 提供。

与Facebook的prophet的区别:

  • 逻辑趋势。这里,考虑了另一种参数化方法,容量不是作为输入传递的,而是从数据中推断出来的。

  • 用户可以将任意 sktime 转换器作为 feature_transformer 传递,例如 FourierFeaturesHolidayFeatures

  • 没有默认的每周/每年季节性,这留给用户通过 feature_transformer 参数来处理

  • 使用 changepoint_interval 而不是 n_changepoints 来设置变化点。

  • 接受配置,其中每个外生变量都有一个不同的函数,用于将其与对时间序列的加性效应相关联。例如,可以为一组特征设置不同的先验,或者使用Hill函数来模拟特征的效果。

参数:
changepoint_intervalint, 可选, 默认=25

在历史记录中采样的潜在变化点的数量。

changepoint_rangefloat 或 int, 可选, 默认值=0.8

将估计趋势变化点的历史比例。

  • 如果是浮点数,必须在 0 和 1 之间。范围将是训练历史记录的该比例部分。

  • 如果是整数,可以是正数或负数。绝对值必须小于训练点的数量。范围将是该数量的点。负整数表示从历史记录末尾开始计数的点数,正整数表示从开始计数的点数。

changepoint_prior_scalefloat, 可选, 默认=0.001

正则化参数,控制自动变化点选择的灵活性。

offset_prior_scalefloat, 可选, 默认=0.1

先验分布偏移量的尺度参数。偏移量是分段趋势方程中的常数项。

feature_transformersktime 转换器, BaseTransformer, 可选, 默认=None

用于生成傅里叶项、节假日或其他特征的转换器对象。如果为 None,则不使用额外的特征。对于多个特征,请传递一个包含转换器的 FeatureUnion 对象。

capacity_prior_scalefloat, 可选, 默认=0.2

先验分布容量的尺度参数。

capacity_prior_locfloat, 可选, 默认=1.1

先验分布容量的位置参数。

noise_scalefloat, 可选, 默认=0.05

观测噪声的尺度参数。

趋势str, 可选, 可以是 “linear” (默认) 或 “logistic”

要使用的趋势类型。可以是“线性”或“逻辑”。

mcmc_samplesint, 可选, 默认=2000

要抽取的MCMC样本数量。

mcmc_warmupint, 可选, 默认=200

MCMC 预热步数。也称为老化。

mcmc_chainsint, 可选, 默认=4

要并行运行的MCMC链的数量。

推理方法str, 可选, 可以是 “mcmc” 或 “map”, 默认=”map”

要使用的推理方法。可以是“mcmc”或“map”。

优化器名称str, 可选, 默认值=”Adam”

用于变分推理的 numpyro 优化器名称。

optimizer_kwargsdict, 可选, 默认={}

传递给 numpyro 优化器的额外关键字参数。

优化器步骤int, 可选, 默认=100_000

变分推断中执行的优化步骤数。

外生效应List[AbstractEffect], 可选, 默认=None

定义模型中要使用的内生效应的 prophetverse AbstractEffect 对象列表。

默认效果AbstractEffectm 可选,默认=None

当未为变量指定效果时使用的默认效果。

default_exogenous_priortuple, 默认=None

外生效应的默认先验分布。

rng_keyjax.random.PRNGKey 或 None (默认)

随机数生成器密钥。

属性:
截止

截止 = “当前时间” 预测器的状态。

fh

传递的预测范围。

is_fitted

是否已调用 fit

示例

>>> from sktime.datasets import load_airline
>>> from sktime.forecasting.prophetverse import Prophetverse
>>> from prophetverse.effects.fourier import LinearFourierSeasonality
>>> from prophetverse.utils.regex import no_input_columns
>>> y = load_airline()
>>> model = Prophetverse(
...     exogenous_effects=[
...         (
...             "seasonality",
...             LinearFourierSeasonality(
...                 sp_list=[12],
...                 fourier_terms_list=[3],
...                 freq="M",
...                 effect_mode="multiplicative",
...             ),
...             no_input_columns,
...         )
...     ],
... )
>>> model.fit(y)
>>> model.predict(fh=[1, 2, 3])

方法

check_is_fitted()

检查估计器是否已被拟合。

clone()

获取具有相同超参数的对象副本。

clone_tags(estimator[, tag_names])

从另一个估计器克隆标签作为动态覆盖。

create_test_instance([parameter_set])

如果可能,构造 Estimator 实例。

create_test_instances_and_names([parameter_set])

创建所有测试实例的列表及其名称列表。

fit(y[, X, fh])

将预测器拟合到训练数据。

fit_predict(y[, X, fh, X_pred])

在未来的视野中拟合和预测时间序列。

get_class_tag(tag_name[, tag_value_default])

获取类标签的值。

get_class_tags()

从类及其所有父类中获取类标签。

get_config()

获取 self 的配置标志

get_fitted_params([deep])

获取拟合参数。

get_param_defaults()

获取对象的参数默认值。

get_param_names([sort])

获取对象的参数名称。

get_params([deep])

获取此对象的参数值字典。

get_tag(tag_name[, tag_value_default, ...])

从估计器类获取标签值并动态覆盖标签。

get_tags()

从估计器类获取标签和动态标签覆盖。

get_test_params([parameter_set])

返回估计器的测试参数设置。

is_composite()

检查对象是否由其他 BaseObjects 组成。

load_from_path(serial)

从文件位置加载对象。

load_from_serial(serial)

从序列化的内存容器中加载对象。

predict([fh, X])

预测未来时间范围内的时序数据。

predict_interval([fh, X, coverage])

计算/返回预测区间预测。

predict_proba([fh, X, marginal])

计算/返回完全概率性的预测。

predict_quantiles([fh, X, alpha])

计算/返回分位数预测。

predict_residuals([y, X])

返回时间序列预测的残差。

predict_var([fh, X, cov])

计算/返回方差预测。

reset()

将对象重置为初始化后的干净状态。

save([path, serialization_format])

将序列化的自身保存到类字节对象或 (.zip) 文件中。

score(y[, X, fh])

使用MAPE(非对称)对地面实况进行分数预测。

set_config(**config_dict)

将配置标志设置为给定值。

set_params(**params)

设置此对象的参数。

set_random_state([random_state, deep, ...])

为 self 设置 random_state 伪随机种子参数。

set_tags(**tag_dict)

将动态标签设置为给定值。

update(y[, X, update_params])

更新截止值,并可选地更新拟合参数。

update_predict(y[, cv, X, update_params, ...])

在测试集上迭代地进行预测并更新模型。

update_predict_single([y, fh, X, update_params])

用新数据更新模型并进行预测。

check_is_fitted()[源代码]#

检查估计器是否已被拟合。

引发:
NotFittedError

如果估计器尚未拟合。

clone()[源代码]#

获取具有相同超参数的对象副本。

克隆是一个在初始化后状态下的不同对象,没有共享引用。此函数等同于返回 self 的 sklearn.clone。

引发:
如果克隆不符合规范,由于 __init__ 存在错误,将引发 RuntimeError。

注释

如果成功,值等于 type(self)(**self.get_params(deep=False))

clone_tags(estimator, tag_names=None)[源代码]#

从另一个估计器克隆标签作为动态覆盖。

参数:
估计器继承自 BaseEstimator 的估计器
标签名称str 或 str 列表, 默认 = None

要克隆的标签名称。如果为 None,则使用估计器中的所有标签作为 tag_names

返回:
自我

自我引用。

注释

通过在 tag_set 中设置来自估计器的标签值,更改对象状态为 self 中的动态标签。

classmethod create_test_instance(parameter_set='default')[源代码]#

如果可能,构造 Estimator 实例。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
实例使用默认参数的类实例

注释

get_test_params 可以返回字典或字典列表。此函数获取 get_test_params 返回的第一个或单个字典,并用其构建对象。

classmethod create_test_instances_and_names(parameter_set='default')[源代码]#

创建所有测试实例的列表及其名称列表。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
objscls 实例列表

第 i 个实例是 cls(**cls.get_test_params()[i])

名称list of str, 与 objs 长度相同

第 i 个元素是测试中第 i 个 obj 实例的名称,约定为 {cls.__name__}-{i},如果存在多个实例,否则为 {cls.__name__}。

property cutoff[源代码]#

截止 = “当前时间” 预测器的状态。

返回:
截止pandas 兼容的索引元素,或 None

pandas 兼容的索引元素,如果设置了截止值;否则为 None

property fh[源代码]#

传递的预测范围。

fit(y, X=None, fh=None)[源代码]#

将预测器拟合到训练数据。

状态变化:

将状态更改为“已拟合”。

写给自己:

  • 设置以“_”结尾的拟合模型属性,拟合属性可以通过 get_fitted_params 进行检查。

  • self.is_fitted 标志设置为 True

  • self.cutoff 设置为在 y 中看到的最后一个索引。

  • 如果传递了 fh,则将其存储到 self.fh 中。

参数:
y : 以 sktime 兼容数据容器格式表示的时间序列。时间序列

要拟合预测器的时间序列。

sktime 中的单个数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype

  • Series 类型 = 单个时间序列,常规预测。pd.DataFramepd.Series``np.ndarray``(1D 或 2D)

  • Panel 类型 = 时间序列集合,全局/面板预测。pd.DataFrame 带有 2 级行 MultiIndex (实例, 时间)3D np.ndarray (实例, 变量, 时间)list 类型的 Series pd.DataFrame

  • Hierarchical 类型 = 分层集合,用于分层预测。pd.DataFrame 带有3个或更多级别的行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)

有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程 examples/01_forecasting.ipynb

fhint, list, np.array 或 ForecastingHorizon, 可选 (默认=None)

预测时间范围编码了需要预测的时间戳。如果 self.get_tag("requires-fh-in-fit")True,则必须在 fit 中传递,不可选

X : sktime 兼容格式的时间序列,可选(默认=None)。时间序列

拟合模型的外生时间序列。应与 y 具有相同的 scitype`(``Series`PanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index"),则 X.index 必须包含 y.index

返回:
self自我引用。
fit_predict(y, X=None, fh=None, X_pred=None)[源代码]#

在未来的视野中拟合和预测时间序列。

fit(y, X, fh).predict(X_pred) 相同。如果未传递 X_pred,则与 fit(y, fh, X).predict(X) 相同。

状态变化:

将状态更改为“已拟合”。

写给自己:

  • 设置以“_”结尾的拟合模型属性,拟合属性可以通过 get_fitted_params 进行检查。

  • self.is_fitted 标志设置为 True

  • self.cutoff 设置为在 y 中看到的最后一个索引。

  • fh 存储到 self.fh 中。

参数:
ysktime 兼容数据容器格式中的时间序列

要拟合预测器的时间序列。

sktime 中的单个数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype

  • Series 类型 = 单个时间序列,常规预测。pd.DataFramepd.Series``np.ndarray``(1D 或 2D)

  • Panel 类型 = 时间序列集合,全局/面板预测。pd.DataFrame 带有 2 级行 MultiIndex (实例, 时间)3D np.ndarray (实例, 变量, 时间)list 类型的 Series pd.DataFrame

  • Hierarchical 类型 = 分层集合,用于分层预测。pd.DataFrame 带有3个或更多级别的行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)

有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程 examples/01_forecasting.ipynb

fh : int, list, np.array 或 ForecastingHorizon (非可选)int, list, np.array 或

预测范围编码了要预测的时间戳。

X : sktime 兼容格式的时间序列,可选(默认=None)。时间序列

拟合模型的外生时间序列。应与 y 具有相同的 scitype`(``Series`PanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index"),则 X.index 必须包含 y.index

X_predsktime 兼容格式的时间序列,可选(默认=None)

用于预测的外生时间序列。如果传递,将在预测中使用,而不是X。应与``fit``中的``y``具有相同的科学类型(SeriesPanel``或``Hierarchical)。如果``self.get_tag(“X-y-must-have-same-index”)``,``X.index``必须包含``fh``索引引用。

返回:
y_predsktime 兼容数据容器格式中的时间序列

fh 处的点预测,具有与 fh 相同的索引。y_pred 与最近传递的 y 具有相同类型:SeriesPanelHierarchical 科学类型,相同格式(见上文)

classmethod get_class_tag(tag_name, tag_value_default=None)[源代码]#

获取类标签的值。

不返回在实例上定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。

参数:
标签名称str

标签值的名称。

tag_value_default任何

如果未找到标签,则使用默认/回退值。

返回:
标签值

在 self 中 tag_name 标签的值。如果未找到,则返回 tag_value_default

classmethod get_class_tags()[源代码]#

从类及其所有父类中获取类标签。

从 _tags 类属性中检索标签:值对。不返回从实例中定义的动态标签(通过 set_tags 或 clone_tags 设置)的信息。

返回:
collected_tagsdict

类标签名称字典:标签值对。通过嵌套继承从 _tags 类属性中收集。

get_config()[源代码]#

获取 self 的配置标志

返回:
config_dictdict

配置名称 : 配置值对的字典。从 _config 类属性通过嵌套继承收集,然后是 _onfig_dynamic 对象属性的任何覆盖和新标签。

get_fitted_params(deep=True)[源代码]#

获取拟合参数。

状态要求:

需要状态为“已拟合”。

参数:
深度bool, 默认=True

是否返回组件的拟合参数。

  • 如果为 True,将返回此对象的参数名称 : 值的字典,包括可拟合组件的拟合参数(= BaseEstimator 值的参数)。

  • 如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的拟合参数。

返回:
fitted_params带有字符串键的字典

拟合参数的字典,paramname : paramvalue 键值对包括:

  • always: 此对象的所有拟合参数,通过 get_param_names 获取的值是该键对应的拟合参数值,属于此对象

  • 如果 deep=True,还包含组件参数的键/值对,组件参数被索引为 [componentname]__[paramname],所有 componentname 的参数都以其值作为 paramname 出现。

  • 如果 deep=True,还包含任意层级的组件递归,例如, [componentname]__[componentcomponentname]__[paramname] 等。

classmethod get_param_defaults()[源代码]#

获取对象的参数默认值。

返回:
default_dict: dict[str, Any]

键是 cls 中在 __init__ 中定义了默认值的所有参数,值是 __init__ 中定义的默认值。

classmethod get_param_names(sort=True)[源代码]#

获取对象的参数名称。

参数:
排序bool, 默认=True

是否按字母顺序返回参数名称(True),或者按它们在类 __init__ 中出现的顺序返回(False)。

返回:
param_names: list[str]

cls 的参数名称列表。如果 sort=False,则按它们在类 __init__ 中出现的顺序排列。如果 sort=True,则按字母顺序排列。

get_params(deep=True)[源代码]#

获取此对象的参数值字典。

参数:
深度bool, 默认=True

是否返回组件的参数。

  • 如果为真,将返回此对象的参数名称 : 值的字典,包括组件的参数(= BaseObject 值的参数)。

  • 如果为 False,将返回此对象的参数名称 : 值的字典,但不包括组件的参数。

返回:
参数带有字符串键的字典

参数的字典,paramname : paramvalue 键值对包括:

  • 总是:通过 get_param_names 获取的这个对象的所有参数,其值为该键的参数值,这个对象的值总是与构造时传递的值相同。

  • 如果 deep=True,还包含组件参数的键/值对,组件的参数被索引为 [组件名称]__[参数名称],所有 组件名称 的参数都以其值作为 参数名称 出现。

  • 如果 deep=True,还包含任意级别的组件递归,例如,[componentname]__[componentcomponentname]__[paramname],等等。

get_tag(tag_name, tag_value_default=None, raise_error=True)[源代码]#

从估计器类获取标签值并动态覆盖标签。

参数:
标签名称str

要检索的标签名称

tag_value_default任何类型,可选;默认=None

如果未找到标签,则使用默认/回退值

raise_error布尔

当未找到标签时是否引发 ValueError

返回:
标签值任何

self 中 tag_name 标签的值。如果未找到,如果 raise_error 为 True,则返回错误,否则返回 tag_value_default

引发:
如果 raise_error 为 True,即如果 tag_name 不在其中,则引发 ValueError。
self.get_tags().keys()
get_tags()[源代码]#

从估计器类获取标签和动态标签覆盖。

返回:
collected_tagsdict

标签名称 : 标签值对的字典。通过嵌套继承从 _tags 类属性中收集,然后从 _tags_dynamic 对象属性中覆盖和新标签。

classmethod get_test_params(parameter_set='default')[源代码]#

返回估计器的测试参数设置。

参数:
参数集str, 默认值=”default”

要返回的测试参数集的名称,用于测试。如果没有为某个值定义特殊参数,将返回 “default” 集。

返回:
参数字典或字典列表,默认 = {}

用于创建类的测试实例的参数 每个字典都是用于构造一个“有趣的”测试实例的参数,即 MyClass(**params)MyClass(**params[i]) 创建一个有效的测试实例。create_test_instance 使用 params 中的第一个(或唯一一个)字典

is_composite()[源代码]#

检查对象是否由其他 BaseObjects 组成。

复合对象是一个包含对象的对象,作为参数。在实例上调用,因为这可能因实例而异。

返回:
composite: bool

一个对象是否具有任何值为 BaseObjects 的参数。

property is_fitted[源代码]#

是否已调用 fit

classmethod load_from_path(serial)[源代码]#

从文件位置加载对象。

参数:
串行ZipFile(path).open(“object”) 的结果
返回:
反序列化自身,结果输出到 path,通过 cls.save(path)
classmethod load_from_serial(serial)[源代码]#

从序列化的内存容器中加载对象。

参数:
serial : cls.save(None) 输出的第一个元素输出结果的第一个元素
返回:
反序列化自身,产生输出 serial,来自 cls.save(None)
predict(fh=None, X=None)[源代码]#

预测未来时间范围内的时序数据。

状态要求:

需要状态为“已拟合”,即 self.is_fitted=True

访问自身中的内容:

  • 以”_”结尾的拟合模型属性

  • self.cutoff, self.is_fitted

写给自己:

如果传递了 fh 并且之前没有传递过,则将其存储到 self.fh 中。

参数:
fh : int, list, np.array 或 ForecastingHorizon,可选(默认=None)int, list, np.array 或

预测范围编码了要预测的时间戳。如果已经在 fit 中传递,则不应传递。如果在 fit 中未传递,则必须传递,不是可选的。

X : sktime 兼容格式的时间序列,可选(默认=None)时间序列

用于预测的外生时间序列。应与 fit 中的 y 具有相同的科学类型(SeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index"),则 X.index 必须包含 fh 索引引用。

返回:
y_predsktime 兼容数据容器格式中的时间序列

fh 处的点预测,具有与 fh 相同的索引。y_pred 与最近传递的 y 具有相同类型:SeriesPanelHierarchical 科学类型,相同格式(见上文)

predict_interval(fh=None, X=None, coverage=0.9)[源代码]#

计算/返回预测区间预测。

如果 coverage 是可迭代的,将计算多个区间。

状态要求:

需要状态为“已拟合”,即 self.is_fitted=True

访问自身中的内容:

  • 以”_”结尾的拟合模型属性

  • self.cutoff, self.is_fitted

写给自己:

如果传递了 fh 并且之前没有传递过,则将其存储到 self.fh 中。

参数:
fh : int, list, np.array 或 ForecastingHorizon,可选(默认=None)int, list, np.array 或

预测范围编码了要预测的时间戳。如果已经在 fit 中传递,则不应传递。如果在 fit 中未传递,则必须传递,不是可选的。

X : sktime 兼容格式的时间序列,可选(默认=None)时间序列

用于预测的外生时间序列。应与 fit 中的 y 具有相同的科学类型(SeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index"),则 X.index 必须包含 fh 索引引用。

覆盖率浮点数或唯一值的浮点数列表,可选(默认=0.90)

预测区间的标称覆盖率

返回:
pred_intpd.DataFrame
列具有多重索引:第一级是来自拟合中 y 的变量名称。
计算区间所对应的二级覆盖分数。

按照输入 coverage 中的相同顺序。

第三级是字符串 “lower” 或 “upper”,用于下限/上限区间。

行索引是 fh,附加(上层)级别等于实例级别,

从 y 中可以看出,如果 y 在拟合中是面板或层次结构。

条目是下限/上限区间端的预测,

对于变量在第一列索引中,在第二列索引的名义覆盖范围内,根据第三列索引的上下限,对于行索引。上下限区间预测等价于在覆盖范围内的alpha = 0.5 - c/2, 0.5 + c/2的分位数预测。

predict_proba(fh=None, X=None, marginal=True)[源代码]#

计算/返回完全概率性的预测。

注意:目前仅对 Series(非面板,非层次结构)y 实现。

状态要求:

需要状态为“已拟合”,即 self.is_fitted=True

访问自身中的内容:

  • 以”_”结尾的拟合模型属性

  • self.cutoff, self.is_fitted

写给自己:

如果传递了 fh 并且之前没有传递过,则将其存储到 self.fh 中。

参数:
fh : int, list, np.array 或 ForecastingHorizon,可选(默认=None)int, list, np.array 或

预测范围编码了要预测的时间戳。如果已经在 fit 中传递,则不应传递。如果在 fit 中未传递,则必须传递,不是可选的。

X : sktime 兼容格式的时间序列,可选(默认=None)时间序列

用于预测的外生时间序列。应与 fit 中的 y 具有相同的科学类型(SeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index"),则 X.index 必须包含 fh 索引引用。

边缘bool, 可选 (默认=True)

返回的分布是否按时间索引是边际的

返回:
pred_distsktime 基础分布

如果 marginal=True,预测分布将是边际分布;如果 marginal=False 并且由方法实现,预测分布将是联合分布。

predict_quantiles(fh=None, X=None, alpha=None)[源代码]#

计算/返回分位数预测。

如果 alpha 是可迭代的,将计算多个分位数。

状态要求:

需要状态为“已拟合”,即 self.is_fitted=True

访问自身中的内容:

  • 以”_”结尾的拟合模型属性

  • self.cutoff, self.is_fitted

写给自己:

如果传递了 fh 并且之前没有传递过,则将其存储到 self.fh 中。

参数:
fh : int, list, np.array 或 ForecastingHorizon,可选(默认=None)int, list, np.array 或

预测范围编码了要预测的时间戳。如果已经在 fit 中传递,则不应传递。如果在 fit 中未传递,则必须传递,不是可选的。

X : sktime 兼容格式的时间序列,可选(默认=None)时间序列

用于预测的外生时间序列。应与 fit 中的 y 具有相同的科学类型(SeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index"),则 X.index 必须包含 fh 索引引用。

alpha浮点数或唯一值的浮点数列表,可选(默认值=[0.05, 0.95])

概率或概率列表,用于计算分位数预测。

返回:
分位数pd.DataFrame
列具有多重索引:第一级是来自拟合中 y 的变量名称。

第二级是传递给函数的 alpha 值。

行索引是 fh,附加(上层)级别等于实例级别,

从 y 中可以看出,如果 y 在拟合中是面板或层次结构。

条目是分位数预测,对于列索引中的变量。

在第二列索引的分位数概率中,对应于行索引。

predict_residuals(y=None, X=None)[源代码]#

返回时间序列预测的残差。

将在 y.index 处为预测计算残差。

如果必须在拟合中传递 fh,则必须与 y.index 一致。如果 y 是 np.ndarray,并且在拟合中没有传递 fh,则将在 fh 为 range(len(y.shape[0])) 时计算残差。

状态要求:

需要状态为“已拟合”。如果已设置 fh,则必须对应于 y 的索引(pandas 或整数)

访问自身中的内容:

以“_”结尾的拟合模型属性。self.cutoff, self._is_fitted

写给自己:

无。

参数:
ysktime 兼容数据容器格式中的时间序列

带有地面真值观测的时间序列,用于计算残差。必须与预测的预期返回值具有相同类型、维度和索引。

如果为 None,则使用迄今为止看到的 y(self._y),特别是:

  • 如果前面有一个单一的拟合调用,那么会产生样本内残差

  • 如果拟合需要 fh,它必须指向拟合中 y 的索引

Xsktime 兼容格式的时间序列,可选(默认=None)

用于更新和预测的外生时间序列 应与 fit 中的 y 具有相同的科学类型(SeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index"),则 X.index 必须包含 fh 索引引用和 y.index

返回:
y_res : 以 sktime 兼容数据容器格式表示的时间序列时间序列

fh 处的预测残差,索引与 fh 相同。 y_res 与最近传递的 y 具有相同类型: SeriesPanelHierarchical 科学类型,格式相同(见上文)

predict_var(fh=None, X=None, cov=False)[源代码]#

计算/返回方差预测。

状态要求:

需要状态为“已拟合”,即 self.is_fitted=True

访问自身中的内容:

  • 以”_”结尾的拟合模型属性

  • self.cutoff, self.is_fitted

写给自己:

如果传递了 fh 并且之前没有传递过,则将其存储到 self.fh 中。

参数:
fh : int, list, np.array 或 ForecastingHorizon,可选(默认=None)int, list, np.array 或

预测范围编码了要预测的时间戳。如果已经在 fit 中传递,则不应传递。如果在 fit 中未传递,则必须传递,不是可选的。

X : sktime 兼容格式的时间序列,可选(默认=None)时间序列

用于预测的外生时间序列。应与 fit 中的 y 具有相同的科学类型(SeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index"),则 X.index 必须包含 fh 索引引用。

covbool, 可选 (默认=False)

如果为 True,则计算协方差矩阵预测。如果为 False,则计算边际方差预测。

返回:
pred_var : pd.DataFrame, 格式取决于 cov 变量pd.DataFrame,格式取决于
如果 cov=False:
列名与在 fit/update 中传递的 y 完全一致。

对于无名称的格式,列索引将是一个 RangeIndex。

行索引为 fh,附加级别等于实例级别,

从 y 中可以看出,如果 y 在拟合中是面板或层次结构。

条目是方差预测,针对列索引中的变量。给定变量和fh索引的方差预测是一种预测

给定观测数据,计算该变量和索引的方差。

如果 cov=True:
列索引是一个多重索引:第一级是变量名称(如上所示)

2级是fh。

行索引为 fh,附加级别等于实例级别,

从 y 中可以看出,如果 y 在拟合中是面板或层次结构。

条目是(共)方差预测,对于列索引中的变量,并且

行和列中时间索引之间的协方差。

注意:不同变量之间不会返回协方差预测。

reset()[源代码]#

将对象重置为初始化后的干净状态。

使用 reset,使用超参数的当前值(get_params 的结果)运行 __init__。这将移除任何对象属性,除了:

  • 超参数 = __init__ 的参数

  • 包含双下划线的对象属性,即字符串”__”

类和对象方法,以及类属性也不受影响。

返回:
自身

类的实例重置为干净的初始化后状态,但保留当前的超参数值。

注释

等同于 sklearn.clone 但覆盖了 self。在调用 self.reset() 之后,self 的值等于 type(self)(**self.get_params(deep=False))

save(path=None, serialization_format='pickle')[源代码]#

将序列化的自身保存到类字节对象或 (.zip) 文件中。

行为:如果 path 是 None,则返回内存中的序列化自身;如果 path 是一个文件位置,则将自身存储在该位置作为一个 zip 文件。

保存的文件是包含以下内容的zip文件:_metadata - 包含自身的类,即 type(self) _obj - 序列化的自身。此类使用默认的序列化(pickle)。

参数:
路径无或文件位置(字符串或路径)

如果为 None,则将 self 保存到内存对象中;如果为文件位置,则将 self 保存到该文件位置。如果:

path=”estimator” 则会在当前工作目录下生成一个名为 estimator.zip 的压缩文件。path=”/home/stored/estimator” 则会在 /home/stored/ 目录下存储一个名为 estimator.zip 的压缩文件。

serialization_format: str, default = “pickle”

用于序列化的模块。可用的选项是 “pickle” 和 “cloudpickle”。请注意,非默认格式可能需要安装其他软依赖。

返回:
如果 path 为 None - 内存中序列化的 self
如果 path 是文件位置 - 带有文件引用的 ZipFile
score(y, X=None, fh=None)[源代码]#

使用MAPE(非对称)对地面实况进行分数预测。

参数:
ypd.Series, pd.DataFrame, 或 np.ndarray (1D 或 2D)

时间序列评分

fhint, list, array-like 或 ForecastingHorizon, 可选 (默认=None)

预测者的视野,即预测未来的步骤。

Xpd.DataFrame,或 2D np.array,可选(默认=None)

外生时间序列评分,如果 self.get_tag(“X-y-must-have-same-index”),则 X.index 必须包含 y.index

返回:
分数浮动

self.predict(fh, X) 相对于 y_test 的 MAPE 损失。

set_config(**config_dict)[源代码]#

将配置标志设置为给定值。

参数:
config_dictdict

配置名称 : 配置值对的字典。有效的配置、值及其含义如下所示:

显示str, “diagram” (默认), 或 “text”

jupyter 内核如何显示 self 的实例

  • “diagram” = html 盒子图表示

  • “text” = 字符串打印输出

print_changed_onlybool, 默认=True

是否仅打印与默认值不同的自身参数(False),或打印所有参数名称和值(False)。不嵌套,即仅影响自身,不影响组件估计器。

警告str, “on” (默认), 或 “off”

是否引发警告,仅影响来自 sktime 的警告

  • “on” = 将引发来自 sktime 的警告

  • “off” = 不会从 sktime 引发警告

后端:并行str, 可选, 默认=”None”

在广播/矢量化时用于并行化的后端,可以是以下之一

  • “None”: 按顺序执行循环,简单的列表推导

  • “loky”, “multiprocessing” 和 “threading”: 使用 joblib.Parallel

  • “joblib”:自定义和第三方 joblib 后端,例如,spark

  • “dask”: 使用 dask,需要在环境中安装 dask

后端:并行:参数dict, 可选, 默认={} (未传递参数)

传递给并行化后端的额外参数作为配置。有效键取决于 backend:parallel 的值:

  • “None”: 没有额外参数,backend_params 被忽略

  • “loky”, “multiprocessing” 和 “threading”: 默认 joblib 后端 任何有效的 joblib.Parallel 键都可以在这里传递,例如 n_jobs,除了 backend 直接由 backend 控制。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 默认值。

  • “joblib”: 自定义和第三方 joblib 后端,例如 spark。任何 joblib.Parallel 的有效键都可以在这里传递,例如 n_jobs,在这种情况下 backend 必须作为 backend_params 的键传递。如果未传递 n_jobs,它将默认为 -1,其他参数将默认为 joblib 的默认值。

  • “dask”: 任何 dask.compute 的有效键都可以传递,例如,scheduler

记住数据bool, 默认=True

是否在 fit 中存储 self._X 和 self._y,并在 update 中更新。如果为 True,则存储和更新 self._X 和 self._y。如果为 False,则不存储和更新 self._X 和 self._y。这在使用 save 时减少了序列化大小,但 update 将默认执行“不操作”而不是“重新拟合所有已见数据”。

返回:
self自我引用。

注释

更改对象状态,将 config_dict 中的配置复制到 self._config_dynamic。

set_params(**params)[源代码]#

设置此对象的参数。

该方法适用于简单的估计器以及复合对象。对于复合对象,即包含其他对象的对象,可以使用参数键字符串 <component>__<parameter> 来访问组件 <component> 中的 <parameter>。如果这使得引用明确,例如没有两个组件的参数名称相同,也可以使用不带 <component>__ 的字符串 <parameter>

参数:
**参数dict

BaseObject 参数,键必须是 <component>__<parameter> 字符串。如果 get_params 键中唯一,__ 后缀可以别名为完整字符串。

返回:
self引用自身(在参数设置之后)
set_random_state(random_state=None, deep=True, self_policy='copy')[源代码]#

为 self 设置 random_state 伪随机种子参数。

通过 estimator.get_params 查找名为 random_state 的参数,并通过 set_params 将其设置为由 random_state 派生的整数。这些整数通过 sample_dependent_seed 的链式哈希采样获得,并保证种子随机生成器的伪随机独立性。

根据 self_policy 应用于 estimator 中的 random_state 参数,并且仅当 deep=True 时,应用于剩余的组件估计器。

注意:即使 self 没有 random_state,或者没有任何组件有 random_state 参数,也会调用 set_params。因此,set_random_state 将重置任何 scikit-base 估计器,即使那些没有 random_state 参数的估计器。

参数:
random_stateint, RandomState 实例或 None, 默认=None

伪随机数生成器,用于控制随机整数的生成。传递整数以在多次函数调用中获得可重复的输出。

深度bool, 默认=True

是否在子估计器中设置随机状态。如果为 False,则仅设置 selfrandom_state 参数(如果存在)。如果为 True,则还会在子估计器中设置 random_state 参数。

self_policystr, 可选值为 {“copy”, “keep”, “new”}, 默认值为 “copy”
  • “复制”:estimator.random_state 被设置为输入的 random_state

  • “保持”:estimator.random_state 保持不变

  • “new” : estimator.random_state 被设置为一个新的随机状态,

源自输入 random_state,并且通常与它不同

返回:
self自我引用
set_tags(**tag_dict)[源代码]#

将动态标签设置为给定值。

参数:
**标签字典dict

标签名称:标签值对的字典。

返回:
自我

自我引用。

注释

通过在 tag_dict 中设置标签值,将对象状态更改为 self 中的动态标签。

update(y, X=None, update_params=True)[源代码]#

更新截止值,并可选地更新拟合参数。

如果没有实现特定的估计器更新方法,默认的回退方式如下:

  • update_params=True: 拟合到目前为止的所有观测数据

  • update_params=False: 更新截止并仅记住数据

状态要求:

需要状态为“已拟合”,即 self.is_fitted=True

访问自身中的内容:

  • 以”_”结尾的拟合模型属性

  • self.cutoff, self.is_fitted

写给自己:

  • self.cutoff 更新为在 y 中看到的最新索引。

  • 如果 update_params=True,则更新以 “_” 结尾的拟合模型属性。

参数:
y : 以 sktime 兼容数据容器格式表示的时间序列。时间序列

用于更新预测器的时间序列。

sktime 中的单个数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype

  • Series 类型 = 单个时间序列,常规预测。pd.DataFramepd.Series``np.ndarray``(1D 或 2D)

  • Panel 类型 = 时间序列集合,全局/面板预测。pd.DataFrame 带有 2 级行 MultiIndex (实例, 时间)3D np.ndarray (实例, 变量, 时间)list 类型的 Series pd.DataFrame

  • Hierarchical 类型 = 分层集合,用于分层预测。pd.DataFrame 带有3个或更多级别的行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)

有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程 examples/01_forecasting.ipynb

X : sktime 兼容格式的时间序列,可选(默认=None)。时间序列

用于更新模型拟合的外生时间序列应与 y 具有相同的 scitype`(``Series`PanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index"),则 X.index 必须包含 y.index

更新参数bool, 可选 (默认=True)

是否应更新模型参数。如果 False,则仅更新截止值,模型参数(例如,系数)不会更新。

返回:
self自我引用
update_predict(y, cv=None, X=None, update_params=True, reset_forecaster=True)[源代码]#

在测试集上迭代地进行预测并更新模型。

简写形式,用于执行多个 update / predict 操作链,基于时间分割器 cv 进行数据回放。

与以下相同(如果仅 ycv 为非默认值):

  1. self.update(y=cv.split_series(y)[0][0])

  2. 记得 self.predict() (稍后在单个批次中返回)

  3. self.update(y=cv.split_series(y)[1][0])

  4. 记得 self.predict() (稍后在单个批次中返回)

  5. 等等

  6. 返回所有记忆的预测

如果没有实现特定的估计器更新方法,默认的回退方式如下:

  • update_params=True: 拟合到目前为止的所有观测数据

  • update_params=False: 更新截止并仅记住数据

状态要求:

需要状态为“已拟合”,即 self.is_fitted=True

访问自身中的内容:

  • 以”_”结尾的拟合模型属性

  • self.cutoff, self.is_fitted

写入自身(除非 reset_forecaster=True):
  • self.cutoff 更新为在 y 中看到的最新索引。

  • 如果 update_params=True,则更新以 “_” 结尾的拟合模型属性。

如果 reset_forecaster=True,则不更新状态。

参数:
y : 以 sktime 兼容数据容器格式表示的时间序列。时间序列

用于更新预测器的时间序列。

sktime 中的单个数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype

  • Series 类型 = 单个时间序列,常规预测。pd.DataFramepd.Series``np.ndarray``(1D 或 2D)

  • Panel 类型 = 时间序列集合,全局/面板预测。pd.DataFrame 带有 2 级行 MultiIndex (实例, 时间)3D np.ndarray (实例, 变量, 时间)list 类型的 Series pd.DataFrame

  • Hierarchical 类型 = 分层集合,用于分层预测。pd.DataFrame 带有3个或更多级别的行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)

有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程 examples/01_forecasting.ipynb

cv继承自 BaseSplitter 的时间交叉验证生成器,可选

例如,SlidingWindowSplitterExpandingWindowSplitter;默认 = ExpandingWindowSplitter,其中 initial_window=1,默认情况下,y/X 中的单个数据点被逐个添加并进行预测,initial_window = 1step_length = 1fh = 1

Xsktime 兼容格式的时间序列,可选(默认=None)

用于更新和预测的外生时间序列应与 fit 中的 y 具有相同的类型(SeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index"),则 X.index 必须包含 fh 索引引用。

更新参数bool, 可选 (默认=True)

是否应更新模型参数。如果 False,则仅更新截止值,模型参数(例如,系数)不会更新。

reset_forecasterbool, 可选 (默认=True)
  • 如果为真,将不会改变预测器的状态,即更新/预测序列在副本上运行,并且截止点、模型参数、数据内存不会改变。

  • 如果为 False,将在运行 update/predict 序列时更新 self,就像直接调用 update/predict 一样。

返回:
y_pred对象,用于从多个分割批次中汇总点预测

格式取决于对(截止点,绝对地平线)的预测总体

  • 如果绝对水平点的集合是唯一的:类型是 sktime 兼容数据容器格式的时间序列 输出中抑制了截止点 与最近传递的 y 具有相同的类型:Series、Panel、Hierarchical 科学类型,相同格式(见上文)

  • 如果绝对地平线点的集合不是唯一的:类型是 pandas DataFrame,行和列索引是时间戳 行索引对应于从列索引预测的截止点 列索引对应于预测的绝对地平线 条目是从行索引预测的列索引的点预测 如果在该(截止,地平线)对上没有进行预测,则条目为 nan

update_predict_single(y=None, fh=None, X=None, update_params=True)[源代码]#

用新数据更新模型并进行预测。

此方法对于在单一步骤中进行更新和预测非常有用。

如果没有实现特定估计器的更新方法,默认的回退是先更新,然后预测。

状态要求:

需要状态为“已拟合”。

访问自身中的内容:

以“_”结尾的拟合模型属性。指向已见数据的指针,self._y 和 self.X self.cutoff, self._is_fitted 如果 update_params=True,则以“_”结尾的模型属性。

写给自己:

通过追加行来更新 self._y 和 self._X 与 yX。将 self.cutoff 和 self._cutoff 更新为在 y 中看到的最后一个索引。如果 update_params=True,

更新以“_”结尾的拟合模型属性。

参数:
y : 以 sktime 兼容数据容器格式表示的时间序列。时间序列

用于更新预测器的时间序列。

sktime 中的单个数据格式被称为 mtype 规范,每个 mtype 实现了一个抽象的 scitype

  • Series 类型 = 单个时间序列,常规预测。pd.DataFramepd.Series``np.ndarray``(1D 或 2D)

  • Panel 类型 = 时间序列集合,全局/面板预测。pd.DataFrame 带有 2 级行 MultiIndex (实例, 时间)3D np.ndarray (实例, 变量, 时间)list 类型的 Series pd.DataFrame

  • Hierarchical 类型 = 分层集合,用于分层预测。pd.DataFrame 带有3个或更多级别的行 MultiIndex (hierarchy_1, ..., hierarchy_n, time)

有关数据格式的更多详细信息,请参阅关于 mtype 的术语表。有关使用方法,请参阅预测教程 examples/01_forecasting.ipynb

fh : int, list, np.array 或 ForecastingHorizon,可选(默认=None)int, list, np.array 或

预测范围编码了要预测的时间戳。如果已经在 fit 中传递,则不应传递。如果在 fit 中未传递,则必须传递,不是可选的。

Xsktime 兼容格式的时间序列,可选(默认=None)

用于更新和预测的外生时间序列应与 fit 中的 y 具有相同的类型(SeriesPanelHierarchical)。如果 self.get_tag("X-y-must-have-same-index"),则 X.index 必须包含 fh 索引引用。

更新参数bool, 可选 (默认=True)

是否应更新模型参数。如果 False,则仅更新截止值,模型参数(例如,系数)不会更新。

返回:
y_predsktime 兼容数据容器格式中的时间序列

fh 处的点预测,具有与 fh 相同的索引。y_pred 与最近传递的 y 具有相同类型:SeriesPanelHierarchical 科学类型,相同格式(见上文)