DINOv2
概述
DINOv2模型由Maxime Oquab、Timothée Darcet、Théo Moutakanni、Huy Vo、Marc Szafraniec、Vasil Khalidov、Pierre Fernandez、Daniel Haziza、Francisco Massa、Alaaeldin El-Nouby、Mahmoud Assran、Nicolas Ballas、Wojciech Galuba、Russell Howes、Po-Yao Huang、Shang-Wen Li、Ishan Misra、Michael Rabbat、Vasu Sharma、Gabriel Synnaeve、Hu Xu、Hervé Jegou、Julien Mairal、Patrick Labatut、Armand Joulin、Piotr Bojanowski在DINOv2: Learning Robust Visual Features without Supervision中提出。DINOv2是DINO的升级版,DINO是一种应用于Vision Transformers的自监督方法。这种方法能够生成通用的视觉特征,即无需微调即可跨图像分布和任务工作的特征。
论文的摘要如下:
最近在自然语言处理领域,通过对大量数据进行模型预训练取得的突破,为计算机视觉领域的类似基础模型开辟了道路。这些模型可以通过生成通用的视觉特征,即无需微调即可跨图像分布和任务工作的特征,极大地简化了在任何系统中使用图像的过程。这项工作表明,现有的预训练方法,特别是自监督方法,如果在来自不同来源的足够多的精选数据上进行训练,可以生成这样的特征。我们重新审视了现有的方法,并结合不同的技术来扩展我们的预训练,包括数据和模型规模。大多数技术贡献旨在加速和稳定大规模训练。在数据方面,我们提出了一个自动管道来构建一个专用的、多样化的、精选的图像数据集,而不是像自监督文献中通常做的那样使用未精选的数据。在模型方面,我们训练了一个具有10亿参数的ViT模型(Dosovitskiy等,2020),并将其蒸馏成一系列较小的模型,这些模型在大多数图像和像素级别的基准测试中超越了目前最好的通用特征OpenCLIP(Ilharco等,2021)。
使用提示
模型可以使用torch.jit.trace
进行追踪,该功能利用JIT编译来优化模型,使其运行更快。请注意,这仍然会产生一些不匹配的元素,原始模型和追踪模型之间的差异大约为1e-4。
import torch
from transformers import AutoImageProcessor, AutoModel
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base')
model = AutoModel.from_pretrained('facebook/dinov2-base')
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs[0]
# We have to force return_dict=False for tracing
model.config.return_dict = False
with torch.no_grad():
traced_model = torch.jit.trace(model, [inputs.pixel_values])
traced_outputs = traced_model(inputs.pixel_values)
print((last_hidden_states - traced_outputs[0]).abs().max())
资源
一份官方的Hugging Face和社区(由🌎表示)资源列表,帮助您开始使用DINOv2。
- DINOv2的演示笔记本可以在这里找到。🌎
- Dinov2ForImageClassification 由这个 示例脚本 和 笔记本 支持。
- 另请参阅:图像分类任务指南
如果您有兴趣提交资源以包含在此处,请随时打开一个 Pull Request,我们将进行审核!理想情况下,资源应展示一些新内容,而不是重复现有资源。
Dinov2Config
类 transformers.Dinov2Config
< source >( hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 mlp_ratio = 4 hidden_act = 'gelu' hidden_dropout_prob = 0.0 attention_probs_dropout_prob = 0.0 initializer_range = 0.02 layer_norm_eps = 1e-06 image_size = 224 patch_size = 14 num_channels = 3 qkv_bias = True layerscale_value = 1.0 drop_path_rate = 0.0 use_swiglu_ffn = False out_features = None out_indices = None apply_layernorm = True reshape_hidden_states = True **kwargs )
参数
- hidden_size (
int
, optional, 默认为 768) — 编码器层和池化层的维度。 - num_hidden_layers (
int
, optional, 默认为 12) — Transformer 编码器中的隐藏层数量。 - num_attention_heads (
int
, optional, defaults to 12) — Transformer编码器中每个注意力层的注意力头数。 - mlp_ratio (
int
, 可选, 默认为 4) — MLPs 的隐藏大小相对于hidden_size
的比例. - hidden_act (
str
或function
, 可选, 默认为"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu"
,"relu"
,"selu"
和"gelu_new"
. - hidden_dropout_prob (
float
, optional, 默认为 0.0) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。 - attention_probs_dropout_prob (
float
, optional, 默认为 0.0) — 注意力概率的丢弃比率。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。 - layer_norm_eps (
float
, optional, defaults to 1e-06) — 层归一化层使用的epsilon值。 - image_size (
int
, optional, 默认为 224) — 每张图片的大小(分辨率)。 - patch_size (
int
, optional, defaults to 14) — 每个补丁的大小(分辨率)。 - num_channels (
int
, optional, 默认为 3) — 输入通道的数量。 - qkv_bias (
bool
, optional, defaults toTrue
) — 是否在查询、键和值中添加偏置。 - layerscale_value (
float
, optional, defaults to 1.0) — 用于层缩放的初始值。 - drop_path_rate (
float
, optional, 默认为 0.0) — 每个样本的随机深度率(当应用于残差层的主路径时)。 - use_swiglu_ffn (
bool
, optional, defaults toFalse
) — 是否使用SwiGLU前馈神经网络. - out_features (
List[str]
, 可选) — 如果用作骨干网络,输出特征的列表。可以是"stem"
、"stage1"
、"stage2"
等。 (取决于模型有多少个阶段)。如果未设置且out_indices
已设置,将默认为相应的阶段。如果未设置且out_indices
也未设置,将默认为最后一个阶段。必须与stage_names
属性中定义的顺序相同。 - out_indices (
List[int]
, optional) — 如果用作骨干网络,输出特征的索引列表。可以是0、1、2等(取决于模型有多少个阶段)。如果未设置且out_features
已设置,将默认为相应的阶段。如果未设置且out_features
也未设置,将默认为最后一个阶段。必须与stage_names
属性中定义的顺序相同。 - apply_layernorm (
bool
, optional, defaults toTrue
) — 是否在模型用作骨干网络时对特征图应用层归一化。 - reshape_hidden_states (
bool
, 可选, 默认为True
) — 是否将特征图重塑为形状为(batch_size, hidden_size, height, width)
的4D张量,如果模型被用作骨干网络。如果为False
,特征图将是形状为(batch_size, seq_len, hidden_size)
的3D张量。
这是用于存储Dinov2Model配置的配置类。它用于根据指定的参数实例化一个Dinov2模型,定义模型架构。使用默认值实例化配置将产生与Dinov2 google/dinov2-base-patch16-224架构类似的配置。
配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。
示例:
>>> from transformers import Dinov2Config, Dinov2Model
>>> # Initializing a Dinov2 dinov2-base-patch16-224 style configuration
>>> configuration = Dinov2Config()
>>> # Initializing a model (with random weights) from the dinov2-base-patch16-224 style configuration
>>> model = Dinov2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Dinov2Model
类 transformers.Dinov2Model
< source >( 配置: Dinov2Config )
参数
- config (Dinov2Config) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
裸的DINOv2模型转换器输出原始隐藏状态,没有任何特定的头部。 这个模型是一个PyTorch torch.nn.Module 子类。将其用作常规的PyTorch模块,并参考PyTorch文档以获取与一般使用和行为相关的所有事项。
前进
< source >( pixel_values: typing.Optional[torch.Tensor] = None bool_masked_pos: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
参数
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — 像素值。像素值可以使用AutoImageProcessor获取。详情请参见 BitImageProcessor.preprocess(). - bool_masked_pos (
torch.BoolTensor
of shape(batch_size, sequence_length)
) — 布尔掩码位置。指示哪些补丁被掩码(1)和哪些没有被掩码(0)。仅与预训练相关。 - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
返回
transformers.modeling_outputs.BaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPooling 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(Dinov2Config)和输入。
-
last_hidden_state (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
pooler_output (
torch.FloatTensor
形状为(batch_size, hidden_size)
) — 序列的第一个标记(分类标记)在经过用于辅助预训练任务的层进一步处理后的最后一层隐藏状态。例如,对于BERT系列模型,这返回经过线性层和tanh激活函数处理后的分类标记。线性层的权重是在预训练期间通过下一个句子预测(分类)目标进行训练的。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递了output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递了output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力softmax后的注意力权重,用于计算自注意力头中的加权平均值。
Dinov2Model 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoImageProcessor, Dinov2Model
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
>>> model = Dinov2Model.from_pretrained("facebook/dinov2-base")
>>> inputs = image_processor(image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 257, 768]
Dinov2ForImageClassification
类 transformers.Dinov2ForImageClassification
< source >( 配置: Dinov2Config )
参数
- config (Dinov2Config) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
Dinov2 模型转换器,顶部带有图像分类头(在 [CLS] 标记的最终隐藏状态之上的线性层),例如用于 ImageNet。
该模型是一个PyTorch torch.nn.Module 子类。将其用作常规的PyTorch模块,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( pixel_values: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.ImageClassifierOutput 或 tuple(torch.FloatTensor)
参数
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — 像素值。像素值可以使用AutoImageProcessor获取。详情请参见 BitImageProcessor.preprocess(). - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, optional) — 是否返回一个ModelOutput而不是一个普通的元组。 - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算图像分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.ImageClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.ImageClassifierOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(Dinov2Config)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (
torch.FloatTensor
形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每个阶段的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每个阶段输出的隐藏状态(也称为特征图)。 -
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每个层一个)形状为(batch_size, num_heads, patch_size, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
Dinov2ForImageClassification 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoImageProcessor, Dinov2ForImageClassification
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/dinov2-small-imagenet1k-1-layer")
>>> model = Dinov2ForImageClassification.from_pretrained("facebook/dinov2-small-imagenet1k-1-layer")
>>> inputs = image_processor(image, return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat
FlaxDinov2Model
类 transformers.FlaxDinov2Model
< source >( config: Dinov2Config input_shape = None seed: int = 0 dtype: dtype =
参数
- config (Dinov2Config) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
, optional, defaults tojax.numpy.float32
) — The data type of the computation. Can be one ofjax.numpy.float32
,jax.numpy.float16
(on GPUs) andjax.numpy.bfloat16
(on TPUs).这可以用于在GPU或TPU上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定了计算的数据类型,并不影响模型参数的数据类型。
裸的Dinov2模型变压器输出原始隐藏状态,没有任何特定的头部。
该模型继承自FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(如下载、保存和从PyTorch模型转换权重)。
该模型也是一个 flax.linen.Module 子类。将其作为 常规的 Flax linen 模块使用,并参考 Flax 文档以获取与一般使用和行为相关的所有信息。
最后,该模型支持JAX的固有特性,例如:
__call__
< source >( pixel_values params: 字典 = 无 dropout_rng: <函数 PRNGKey 在 0x7f50727b7640> = 无 train: 布尔值 = 假 output_attentions: 可选[布尔值] = 无 output_hidden_states: 可选[布尔值] = 无 return_dict: 可选[布尔值] = 无 ) → transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,取决于配置 (
) 和输入。
-
last_hidden_state (
jnp.ndarray
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
pooler_output (
jnp.ndarray
形状为(batch_size, hidden_size)
) — 序列的第一个标记(分类标记)的最后一层隐藏状态,经过线性层和 Tanh 激活函数进一步处理。线性层的权重是在预训练期间通过下一个句子预测(分类)目标训练的。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由jnp.ndarray
组成的元组(一个用于嵌入层的输出,一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由jnp.ndarray
组成的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxDinov2PreTrainedModel
的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoImageProcessor, FlaxDinov2Model
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
>>> model = FlaxDinov2Model.from_pretrained("facebook/dinov2-base")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxDinov2ForImageClassification
类 transformers.FlaxDinov2ForImageClassification
< source >( config: Dinov2Config input_shape = None seed: int = 0 dtype: dtype =
参数
- config (Dinov2Config) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
- dtype (
jax.numpy.dtype
, optional, defaults tojax.numpy.float32
) — The data type of the computation. Can be one ofjax.numpy.float32
,jax.numpy.float16
(on GPUs) andjax.numpy.bfloat16
(on TPUs).这可以用于在GPU或TPU上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定了计算的数据类型,并不影响模型参数的数据类型。
Dinov2 模型转换器,顶部带有图像分类头(在 [CLS] 标记的最终隐藏状态之上的线性层),例如用于 ImageNet。
该模型继承自FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(如下载、保存和从PyTorch模型转换权重)。
该模型也是一个 flax.linen.Module 子类。将其作为 常规的 Flax linen 模块使用,并参考 Flax 文档以获取与一般使用和行为相关的所有信息。
最后,该模型支持JAX的固有特性,例如:
__call__
< source >( pixel_values params: 字典 = 无 dropout_rng: <函数 PRNGKey 位于 0x7f50727b7640> = 无 train: 布尔值 = 假 output_attentions: 可选[布尔值] = 无 output_hidden_states: 可选[布尔值] = 无 return_dict: 可选[布尔值] = 无 ) → transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或 tuple(torch.FloatTensor)
返回
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一个包含各种元素的 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),具体取决于配置(
)和输入。
-
logits (
jnp.ndarray
形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每层的输出)。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxDinov2PreTrainedModel
的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoImageProcessor, FlaxDinov2ForImageClassification
>>> from PIL import Image
>>> import jax
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base-imagenet1k-1-layer")
>>> model = FlaxDinov2ForImageClassification.from_pretrained("facebook/dinov2-base-imagenet1k-1-layer")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = jax.numpy.argmax(logits, axis=-1)
>>> print("Predicted class:", model.config.id2label[predicted_class_idx.item()])