Swin Transformer V2
概述
Swin Transformer V2 模型由 Ze Liu、Han Hu、Yutong Lin、Zhuliang Yao、Zhenda Xie、Yixuan Wei、Jia Ning、Yue Cao、Zheng Zhang、Li Dong、Furu Wei 和 Baining Guo 在 Swin Transformer V2: Scaling Up Capacity and Resolution 中提出。
论文的摘要如下:
大规模NLP模型已被证明能显著提高语言任务的性能,且没有饱和的迹象。它们还展示了像人类一样的惊人少样本能力。本文旨在探索计算机视觉中的大规模模型。我们解决了大规模视觉模型在训练和应用中的三个主要问题,包括训练不稳定性、预训练和微调之间的分辨率差距以及对标注数据的依赖。提出了三种主要技术:1)结合余弦注意力的残差后归一化方法,以提高训练稳定性;2)对数间隔连续位置偏差方法,以有效地将使用低分辨率图像预训练的模型转移到具有高分辨率输入的下游任务;3)自监督预训练方法SimMIM,以减少对大量标注图像的需求。通过这些技术,本文成功训练了一个30亿参数的Swin Transformer V2模型,这是迄今为止最大的密集视觉模型,并使其能够训练分辨率高达1,536×1,536的图像。它在4个代表性视觉任务上创造了新的性能记录,包括ImageNet-V2图像分类、COCO目标检测、ADE20K语义分割和Kinetics-400视频动作分类。还请注意,我们的训练比谷歌的十亿级视觉模型效率更高,消耗的标注数据减少了40倍,训练时间减少了40倍。
该模型由nandwalritik贡献。 原始代码可以在这里找到。
资源
一份官方的Hugging Face和社区(由🌎表示)资源列表,帮助您开始使用Swin Transformer v2。
- Swinv2ForImageClassification 由这个 示例脚本 和 笔记本 支持。
- 另请参阅:图像分类任务指南
除此之外:
- Swinv2ForMaskedImageModeling 由这个 示例脚本 支持。
如果您有兴趣提交资源以包含在此处,请随时打开一个 Pull Request,我们将进行审核!理想情况下,资源应展示一些新内容,而不是重复现有资源。
Swinv2Config
类 transformers.Swinv2Config
< source >( image_size = 224 patch_size = 4 num_channels = 3 embed_dim = 96 depths = [2, 2, 6, 2] num_heads = [3, 6, 12, 24] window_size = 7 pretrained_window_sizes = [0, 0, 0, 0] mlp_ratio = 4.0 qkv_bias = True hidden_dropout_prob = 0.0 attention_probs_dropout_prob = 0.0 drop_path_rate = 0.1 hidden_act = 'gelu' use_absolute_embeddings = False initializer_range = 0.02 layer_norm_eps = 1e-05 encoder_stride = 32 out_features = None out_indices = None **kwargs )
参数
- image_size (
int
, optional, 默认为 224) — 每张图片的大小(分辨率)。 - patch_size (
int
, optional, defaults to 4) — 每个补丁的大小(分辨率)。 - num_channels (
int
, optional, defaults to 3) — 输入通道的数量。 - embed_dim (
int
, optional, 默认为 96) — 补丁嵌入的维度. - depths (
list(int)
, 可选, 默认为[2, 2, 6, 2]
) — Transformer编码器中每一层的深度。 - num_heads (
list(int)
, 可选, 默认为[3, 6, 12, 24]
) — Transformer编码器每一层中的注意力头数。 - window_size (
int
, optional, 默认为 7) — 窗口的大小. - pretrained_window_sizes (
list(int)
, optional, defaults to[0, 0, 0, 0]
) — 预训练期间的窗口大小。 - mlp_ratio (
float
, optional, defaults to 4.0) — MLP隐藏维度与嵌入维度的比率。 - qkv_bias (
bool
, optional, defaults toTrue
) — 是否应该向查询、键和值添加可学习的偏置。 - hidden_dropout_prob (
float
, optional, 默认为 0.0) — 嵌入层和编码器中所有全连接层的 dropout 概率。 - attention_probs_dropout_prob (
float
, optional, 默认为 0.0) — 注意力概率的丢弃比例。 - drop_path_rate (
float
, optional, 默认为 0.1) — 随机深度率. - hidden_act (
str
或function
, 可选, 默认为"gelu"
) — 编码器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu"
,"relu"
,"selu"
和"gelu_new"
. - use_absolute_embeddings (
bool
, optional, defaults toFalse
) — 是否将绝对位置嵌入添加到补丁嵌入中。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。 - layer_norm_eps (
float
, optional, defaults to 1e-05) — 层归一化层使用的epsilon值。 - encoder_stride (
int
, optional, 默认为 32) — 在解码器头部用于掩码图像建模的空间分辨率增加因子。 - out_features (
List[str]
, 可选) — 如果用作骨干网络,输出特征的列表。可以是"stem"
、"stage1"
、"stage2"
等。 (取决于模型有多少个阶段)。如果未设置且out_indices
已设置,将默认为相应的阶段。如果未设置且out_indices
也未设置,将默认为最后一个阶段。 - out_indices (
List[int]
, optional) — 如果用作骨干网络,输出特征的索引列表。可以是0、1、2等(取决于模型有多少个阶段)。如果未设置且out_features
已设置,将默认为相应的阶段。 如果未设置且out_features
也未设置,将默认为最后一个阶段。
这是用于存储Swinv2Model配置的配置类。它用于根据指定的参数实例化一个Swin Transformer v2模型,定义模型架构。使用默认值实例化配置将产生与Swin Transformer v2 microsoft/swinv2-tiny-patch4-window8-256架构类似的配置。
配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。
示例:
>>> from transformers import Swinv2Config, Swinv2Model
>>> # Initializing a Swinv2 microsoft/swinv2-tiny-patch4-window8-256 style configuration
>>> configuration = Swinv2Config()
>>> # Initializing a model (with random weights) from the microsoft/swinv2-tiny-patch4-window8-256 style configuration
>>> model = Swinv2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Swinv2Model
class transformers.Swinv2Model
< source >( config add_pooling_layer = True use_mask_token = False )
参数
- config (Swinv2Config) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
裸的Swinv2模型转换器输出原始隐藏状态,没有任何特定的头部。 这个模型是PyTorch torch.nn.Module 的子类。使用 它作为常规的PyTorch模块,并参考PyTorch文档以获取与一般使用和行为相关的所有事项。
前进
< source >( pixel_values: typing.Optional[torch.FloatTensor] = None bool_masked_pos: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: bool = False return_dict: typing.Optional[bool] = None ) → transformers.models.swinv2.modeling_swinv2.Swinv2ModelOutput
或 tuple(torch.FloatTensor)
参数
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — 像素值。像素值可以使用AutoImageProcessor获取。详情请参见ViTImageProcessor.call()。 - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - interpolate_pos_encoding (
bool
, optional, defaultFalse
) — 是否插值预训练的位置编码. - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - bool_masked_pos (
torch.BoolTensor
of shape(batch_size, num_patches)
, optional) — 布尔掩码位置。指示哪些补丁被掩码(1)和哪些没有被掩码(0)。
返回
transformers.models.swinv2.modeling_swinv2.Swinv2ModelOutput
或 tuple(torch.FloatTensor)
一个 transformers.models.swinv2.modeling_swinv2.Swinv2ModelOutput
或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(Swinv2Config)和输入。
-
last_hidden_state (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的隐藏状态序列。 -
pooler_output (
torch.FloatTensor
形状为(batch_size, hidden_size)
, 可选, 当传递add_pooling_layer=True
时返回) — 最后一层隐藏状态的平均池化。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出 + 一个用于每个阶段的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每个阶段一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
-
reshaped_hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出 + 一个用于每个阶段的输出),形状为(batch_size, hidden_size, height, width)
。模型在每层输出处的隐藏状态加上初始嵌入输出,重新调整为包含空间维度。
Swinv2Model 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoImageProcessor, Swinv2Model
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256")
>>> model = Swinv2Model.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256")
>>> inputs = image_processor(image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 64, 768]
Swinv2ForMaskedImageModeling
类 transformers.Swinv2ForMaskedImageModeling
< source >( config )
参数
- config (Swinv2Config) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
Swinv2 模型,顶部带有解码器,用于掩码图像建模,如 SimMIM 中提出的。
请注意,我们在示例目录中提供了一个脚本来在自定义数据上预训练此模型。
该模型是一个PyTorch torch.nn.Module 子类。将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( pixel_values: typing.Optional[torch.FloatTensor] = None bool_masked_pos: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: bool = False return_dict: typing.Optional[bool] = None ) → transformers.models.swinv2.modeling_swinv2.Swinv2MaskedImageModelingOutput
或 tuple(torch.FloatTensor)
参数
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — 像素值。像素值可以使用AutoImageProcessor获取。详情请参见ViTImageProcessor.call()。 - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - interpolate_pos_encoding (
bool
, optional, defaultFalse
) — 是否插值预训练的位置编码. - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - bool_masked_pos (
torch.BoolTensor
of shape(batch_size, num_patches)
) — 布尔掩码位置。指示哪些补丁被掩码(1)和哪些没有被掩码(0)。
返回
transformers.models.swinv2.modeling_swinv2.Swinv2MaskedImageModelingOutput
或 tuple(torch.FloatTensor)
一个 transformers.models.swinv2.modeling_swinv2.Swinv2MaskedImageModelingOutput
或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(Swinv2Config)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
, 可选, 当提供bool_masked_pos
时返回) — 掩码图像建模(MLM)损失。 -
reconstruction (
torch.FloatTensor
形状为(batch_size, num_channels, height, width)
) — 重建的像素值。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入的输出 + 一个用于每个阶段的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每个阶段一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
-
reshaped_hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入的输出 + 一个用于每个阶段的输出),形状为(batch_size, hidden_size, height, width)
。模型在每层输出处的隐藏状态加上初始嵌入输出,重新调整为包含空间维度。
Swinv2ForMaskedImageModeling 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoImageProcessor, Swinv2ForMaskedImageModeling
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256")
>>> model = Swinv2ForMaskedImageModeling.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256")
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
>>> list(reconstructed_pixel_values.shape)
[1, 3, 256, 256]
Swinv2ForImageClassification
类 transformers.Swinv2ForImageClassification
< source >( config )
参数
- config (Swinv2Config) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
Swinv2 模型转换器,顶部带有图像分类头(在 [CLS] 标记的最终隐藏状态之上的线性层),例如用于 ImageNet。
请注意,通过在模型的前向传播中将interpolate_pos_encoding
设置为True
,可以在比训练时更高分辨率的图像上微调SwinV2。这将把预训练的位置嵌入插值到更高的分辨率。
该模型是一个PyTorch torch.nn.Module 子类。将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( pixel_values: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: bool = False return_dict: typing.Optional[bool] = None ) → transformers.models.swinv2.modeling_swinv2.Swinv2ImageClassifierOutput
或 tuple(torch.FloatTensor)
参数
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — 像素值。像素值可以使用AutoImageProcessor获取。详情请参见ViTImageProcessor.call()。 - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - interpolate_pos_encoding (
bool
, optional, defaultFalse
) — 是否插值预训练的位置编码. - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算图像分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.models.swinv2.modeling_swinv2.Swinv2ImageClassifierOutput
或 tuple(torch.FloatTensor)
一个 transformers.models.swinv2.modeling_swinv2.Swinv2ImageClassifierOutput
或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(Swinv2Config)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (
torch.FloatTensor
形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入的输出 + 一个用于每个阶段的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每个阶段一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
reshaped_hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入的输出 + 一个用于每个阶段的输出),形状为(batch_size, hidden_size, height, width)
。模型在每层输出处的隐藏状态加上初始嵌入输出,重新调整以包括空间维度。
Swinv2ForImageClassification 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoImageProcessor, Swinv2ForImageClassification
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256")
>>> model = Swinv2ForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256")
>>> inputs = image_processor(image, return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
Egyptian cat