Transformers 文档

图像GPT

ImageGPT

概述

ImageGPT模型由Mark Chen、Alec Radford、Rewon Child、Jeffrey Wu、Heewoo Jun、David Luan和Ilya Sutskever在Generative Pretraining from Pixels中提出。ImageGPT(iGPT)是一个类似于GPT-2的模型,训练用于预测下一个像素值,允许进行无条件或有条件的图像生成。

论文的摘要如下:

受到自然语言无监督表示学习进展的启发,我们研究了类似的模型是否能够学习到有用的图像表示。我们训练了一个序列Transformer来自回归预测像素,而不引入2D输入结构的知识。尽管在没有标签的低分辨率ImageNet上进行训练,我们发现一个GPT-2规模的模型通过线性探测、微调和低数据分类学习到了强大的图像表示。在CIFAR-10上,我们通过线性探测达到了96.3%的准确率,超过了有监督的Wide ResNet,并且在完全微调的情况下达到了99.0%的准确率,与顶级的有监督预训练模型相匹配。当用VQVAE编码替换像素时,我们在ImageNet上的自监督基准测试中也具有竞争力,通过线性探测我们的特征达到了69.0%的top-1准确率。

drawing Summary of the approach. Taken from the [original paper](https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf).

该模型由nielsr贡献,基于此问题。原始代码可以在这里找到。

使用提示

  • ImageGPT 几乎与 GPT-2 完全相同,唯一的区别是使用了不同的激活函数(即“quick gelu”),并且层归一化层不会对输入进行均值中心化。ImageGPT 也没有绑定输入和输出的嵌入。
  • 由于Transformer的注意力机制在序列长度上的时间和内存需求呈二次方增长,作者在较小的输入分辨率(如32x32和64x64)上预训练了ImageGPT。然而,将32x32x3=3072个0..255的标记序列输入Transformer仍然过大。因此,作者对(R,G,B)像素值应用了k=512的k-means聚类。这样,我们只有一个32*32=1024长的序列,但现在整数范围是0..511。因此,我们以更大的嵌入矩阵为代价缩短了序列长度。换句话说,ImageGPT的词汇大小为512,加上一个特殊的“句子开始”(SOS)标记,用于每个序列的开头。可以使用ImageGPTImageProcessor来为模型准备图像。
  • 尽管是完全无监督预训练的(即不使用任何标签),ImageGPT 生成的图像特征在下游任务(如图像分类)中表现相当出色。作者表明,网络中间的特征表现最佳,可以直接用于训练线性模型(例如 sklearn 逻辑回归模型)。这也被称为“线性探测”。特征可以通过首先将图像通过模型前向传播,然后指定 output_hidden_states=True,然后在任意层对隐藏状态进行平均池化来轻松获得。
  • 或者,可以像BERT一样在下游数据集上进一步微调整个模型。为此,您可以使用ImageGPTForImageClassification
  • ImageGPT 有不同的大小:有 ImageGPT-small、ImageGPT-medium 和 ImageGPT-large。作者还训练了一个 XL 变体,但他们没有发布。大小的差异总结在下表中:
模型变体 深度 隐藏层大小 解码器隐藏层大小 参数 (百万) ImageNet-1k Top 1
MiT-b0 [2, 2, 2, 2] [32, 64, 160, 256] 256 3.7 70.5
MiT-b1 [2, 2, 2, 2] [64, 128, 320, 512] 256 14.0 78.7
MiT-b2 [3, 4, 6, 3] [64, 128, 320, 512] 768 25.4 81.6
MiT-b3 [3, 4, 18, 3] [64, 128, 320, 512] 768 45.2 83.1
MiT-b4 [3, 8, 27, 3] [64, 128, 320, 512] 768 62.6 83.6
MiT-b5 [3, 6, 40, 3] [64, 128, 320, 512] 768 82.0 83.8

资源

一份官方的Hugging Face和社区(由🌎表示)资源列表,帮助您开始使用ImageGPT。

Image Classification

如果您有兴趣提交资源以包含在此处,请随时打开一个 Pull Request,我们将进行审核!理想情况下,资源应展示一些新内容,而不是重复现有资源。

ImageGPTConfig

transformers.ImageGPTConfig

< >

( 词汇大小 = 513 位置数量 = 1024 嵌入维度 = 512 层数 = 24 头数 = 8 内部维度 = 无 激活函数 = 'quick_gelu' 残差丢弃率 = 0.1 嵌入丢弃率 = 0.1 注意力丢弃率 = 0.1 层归一化epsilon = 1e-05 初始化范围 = 0.02 缩放注意力权重 = 真 使用缓存 = 真 绑定词嵌入 = 假 按逆层索引缩放注意力 = 假 重新排序和上转换注意力 = 假 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 512) — GPT-2 模型的词汇量大小。定义了调用 ImageGPTModelTFImageGPTModel 时传递的 inputs_ids 可以表示的不同标记的数量。
  • n_positions (int, 可选, 默认为 32*32) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • n_embd (int, optional, 默认为 512) — 嵌入和隐藏状态的维度。
  • n_layer (int, optional, 默认为 24) — Transformer 编码器中的隐藏层数。
  • n_head (int, optional, 默认为 8) — Transformer 编码器中每个注意力层的注意力头数。
  • n_inner (int, 可选, 默认为 None) — 内部前馈层的维度。None 会将其设置为 n_embd 的 4 倍
  • activation_function (str, optional, defaults to "quick_gelu") — 激活函数(可以是src/transformers/activations.py中定义的激活函数之一)。 默认为“quick_gelu”。
  • resid_pdrop (float, optional, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的丢弃概率。
  • embd_pdrop (int, optional, 默认为 0.1) — 嵌入的丢弃比例。
  • attn_pdrop (float, optional, defaults to 0.1) — 注意力的dropout比例.
  • layer_norm_epsilon (float, optional, defaults to 1e-5) — 用于层归一化层的epsilon值。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • scale_attn_weights (bool, optional, defaults to True) — 通过除以sqrt(hidden_size)来缩放注意力权重。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。
  • scale_attn_by_inverse_layer_idx (bool, 可选, 默认为 False) — 是否通过 1 / layer_idx + 1 额外缩放注意力权重.
  • reorder_and_upcast_attn (bool, optional, defaults to False) — 是否在计算注意力(点积)之前缩放键(K),并在使用混合精度训练时将注意力点积/softmax上转换为float()。

这是用于存储ImageGPTModelTFImageGPTModel配置的配置类。它用于根据指定的参数实例化GPT-2模型,定义模型架构。使用默认值实例化配置将产生类似于ImageGPT openai/imagegpt-small架构的配置。

配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。

示例:

>>> from transformers import ImageGPTConfig, ImageGPTModel

>>> # Initializing a ImageGPT configuration
>>> configuration = ImageGPTConfig()

>>> # Initializing a model (with random weights) from the configuration
>>> model = ImageGPTModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

ImageGPTFeatureExtractor

transformers.ImageGPTFeatureExtractor

< >

( *args **kwargs )

__call__

< >

( images **kwargs )

预处理一张图像或一批图像。

ImageGPTImageProcessor

class transformers.ImageGPTImageProcessor

< >

( clusters: typing.Union[typing.List[typing.List[int]], numpy.ndarray, NoneType] = None do_resize: bool = True size: typing.Dict[str, int] = None resample: Resampling = do_normalize: bool = True do_color_quantize: bool = True **kwargs )

参数

  • clusters (np.ndarrayList[List[int]], 可选) — 用于颜色量化的颜色簇,形状为 (n_clusters, 3)。可以在 preprocess 中被 clusters 覆盖。
  • do_resize (bool, 可选, 默认为 True) — 是否将图像的尺寸调整为 (size["height"], size["width"])。可以在 preprocess 中通过 do_resize 覆盖此设置。
  • size (Dict[str, int] optional, defaults to {"height" -- 256, "width": 256}): 调整大小后的图像尺寸。可以在preprocess中被size覆盖。
  • resample (PILImageResampling, 可选, 默认为 Resampling.BILINEAR) — 如果调整图像大小,使用的重采样过滤器。可以在 preprocess 中通过 resample 覆盖。
  • do_normalize (bool, 可选, 默认为 True) — 是否将图像像素值归一化到 [-1, 1] 之间。可以在 preprocess 中被 do_normalize 覆盖。
  • do_color_quantize (bool, 可选, 默认为 True) — 是否对图像进行颜色量化。可以在 preprocess 中被 do_color_quantize 覆盖。

构建一个ImageGPT图像处理器。此图像处理器可用于将图像调整为较小的分辨率(例如32x32或64x64),对其进行归一化处理,最后进行颜色量化以获得“像素值”序列(颜色簇)。

预处理

< >

( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[ForwardRef('PIL.Image.Image')], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]] do_resize: bool = None size: typing.Dict[str, int] = None resample: Resampling = None do_normalize: bool = None do_color_quantize: typing.Optional[bool] = None clusters: typing.Union[typing.List[typing.List[int]], numpy.ndarray, NoneType] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None )

参数

  • 图像 (ImageInput) — 要预处理的图像。期望输入单个或批量的图像,像素值范围在0到255之间。如果传入的图像像素值在0到1之间,请设置 do_normalize=False.
  • do_resize (bool, optional, defaults to self.do_resize) — 是否调整图像大小.
  • size (Dict[str, int], optional, defaults to self.size) — 调整大小后的图像尺寸。
  • resample (int, 可选, 默认为 self.resample) — 如果调整图像大小,则使用的重采样过滤器。这可以是枚举 PILImageResampling 之一,仅在 do_resize 设置为 True 时有效。
  • do_normalize (bool, 可选, 默认为 self.do_normalize) — 是否对图像进行归一化
  • do_color_quantize (bool, optional, defaults to self.do_color_quantize) — 是否对图像进行颜色量化。
  • clusters (np.ndarrayList[List[int]], 可选, 默认为 self.clusters) — 用于量化形状为 (n_clusters, 3) 的图像的聚类。仅在 do_color_quantize 设置为 True 时有效。
  • return_tensors (strTensorType, 可选) — 返回的张量类型。可以是以下之一:
    • 未设置:返回一个 np.ndarray 列表。
    • TensorType.TENSORFLOW'tf':返回一个类型为 tf.Tensor 的批次。
    • TensorType.PYTORCH'pt':返回一个类型为 torch.Tensor 的批次。
    • TensorType.NUMPY'np':返回一个类型为 np.ndarray 的批次。
    • TensorType.JAX'jax':返回一个类型为 jax.numpy.ndarray 的批次。
  • data_format (ChannelDimensionstr, 可选, 默认为 ChannelDimension.FIRST) — 输出图像的通道维度格式。可以是以下之一:
    • ChannelDimension.FIRST: 图像格式为 (num_channels, height, width)。
    • ChannelDimension.LAST: 图像格式为 (height, width, num_channels)。 仅在 do_color_quantize 设置为 False 时有效。
  • input_data_format (ChannelDimensionstr, 可选) — 输入图像的通道维度格式。如果未设置,则从输入图像推断通道维度格式。可以是以下之一:
    • "channels_first"ChannelDimension.FIRST: 图像格式为 (num_channels, height, width)。
    • "channels_last"ChannelDimension.LAST: 图像格式为 (height, width, num_channels)。
    • "none"ChannelDimension.NONE: 图像格式为 (height, width)。

预处理一张图像或一批图像。

ImageGPTModel

transformers.ImageGPTModel

< >

( config: ImageGPTConfig )

参数

  • config (ImageGPTConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的ImageGPT模型变压器输出原始隐藏状态,顶部没有任何特定的头部。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs: typing.Any ) transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — input_ids_length = sequence_length if past_key_values is None else past_key_values[0][0].shape[-2] (sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

    如果使用了past_key_values,则只应将未计算其过去的input_ids作为input_ids传递。

    可以使用AutoImageProcessor获取索引。详情请参见ImageGPTImageProcessor.call()

  • past_key_values (Tuple[Tuple[torch.Tensor]] 长度为 config.n_layers) — 包含模型计算的预计算隐藏状态(注意力块中的键和值)(参见下面的 past_key_values 输出)。可用于加速顺序解码。已经将其过去状态提供给此模型的 input_ids 不应再作为 input_ids 传递,因为它们已经被计算过了。
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果使用了past_key_values,可以选择只输入最后的inputs_embeds(参见past_key_values)。

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 语言建模的标签。请注意,标签在模型内部被移位,即你可以设置 labels = input_ids 索引在 [-100, 0, ..., config.vocab_size] 中选择。所有设置为 -100 的标签 将被忽略(掩码),损失仅针对 [0, ..., config.vocab_size] 中的标签计算

返回

transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(ImageGPTConfig)和输入。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递了 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,并且如果 config.is_encoder_decoder=True,则还包含 2 个额外的形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的张量。

    包含预先计算的隐藏状态(自注意力块中的键和值,并且如果 config.is_encoder_decoder=True,则在交叉注意力块中),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=Trueconfig.add_cross_attention=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的交叉注意力层的注意力权重,在注意力 softmax 后,用于计算交叉注意力头中的加权平均值。

ImageGPTModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoImageProcessor, ImageGPTModel
>>> from PIL import Image
>>> import requests

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> image_processor = AutoImageProcessor.from_pretrained("openai/imagegpt-small")
>>> model = ImageGPTModel.from_pretrained("openai/imagegpt-small")

>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state

ImageGPTForCausalImageModeling

transformers.ImageGPTForCausalImageModeling

< >

( config: ImageGPTConfig )

参数

  • config (ImageGPTConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

ImageGPT模型变换器,顶部带有语言建模头(线性层,权重与输入嵌入绑定)。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs: typing.Any ) transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — input_ids_length = sequence_length if past_key_values is None else past_key_values[0][0].shape[-2] (sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

    如果使用了past_key_values,则只应将未计算其过去的input_ids作为input_ids传递。

    可以使用AutoImageProcessor获取索引。详情请参见ImageGPTImageProcessor.call()

  • past_key_values (Tuple[Tuple[torch.Tensor]] 长度为 config.n_layers) — 包含模型计算的预计算隐藏状态(注意力块中的键和值)(参见下面的 past_key_values 输出)。可用于加速顺序解码。已经将其过去状态提供给此模型的 input_ids 不应再作为 input_ids 传递,因为它们已经被计算过了。
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果使用了past_key_values,可以选择只输入最后的inputs_embeds(参见past_key_values)。

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 语言建模的标签。请注意,标签在模型内部被移位,即你可以设置 labels = input_ids 索引在 [-100, 0, ..., config.vocab_size] 中选择。所有设置为 -100 的标签 将被忽略(掩码),损失仅针对 [0, ..., config.vocab_size] 中的标签计算

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(ImageGPTConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个标记的预测)。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 由长度为 config.n_layerstorch.FloatTensor 元组组成的元组,每个元组包含自注意力和交叉注意力层的缓存键, 值状态,如果模型用于编码器-解码器设置。仅在 config.is_decoder = True 时相关。

    包含预计算的隐藏状态(注意力块中的键和值),可用于(参见 past_key_values 输入)以加速顺序解码。

ImageGPTForCausalImageModeling 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoImageProcessor, ImageGPTForCausalImageModeling
>>> import torch
>>> import matplotlib.pyplot as plt
>>> import numpy as np

>>> image_processor = AutoImageProcessor.from_pretrained("openai/imagegpt-small")
>>> model = ImageGPTForCausalImageModeling.from_pretrained("openai/imagegpt-small")
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>>> model.to(device)
>>> # unconditional generation of 8 images
>>> batch_size = 4
>>> context = torch.full((batch_size, 1), model.config.vocab_size - 1)  # initialize with SOS token
>>> context = context.to(device)
>>> output = model.generate(
...     input_ids=context, max_length=model.config.n_positions + 1, temperature=1.0, do_sample=True, top_k=40
... )

>>> clusters = image_processor.clusters
>>> height = image_processor.size["height"]
>>> width = image_processor.size["width"]

>>> samples = output[:, 1:].cpu().detach().numpy()
>>> samples_img = [
...     np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [height, width, 3]).astype(np.uint8) for s in samples
... ]  # convert color cluster tokens back to pixels
>>> f, axes = plt.subplots(1, batch_size, dpi=300)

>>> for img, ax in zip(samples_img, axes):
...     ax.axis("off")
...     ax.imshow(img)

ImageGPTForImageClassification

class transformers.ImageGPTForImageClassification

< >

( config: ImageGPTConfig )

参数

  • config (ImageGPTConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

ImageGPT模型转换器,顶部带有图像分类头(线性层)。 ImageGPTForImageClassification 对隐藏状态进行平均池化以进行分类。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs: typing.Any ) transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — input_ids_length = sequence_length if past_key_values is None else past_key_values[0][0].shape[-2] (sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

    如果使用了past_key_values,则只应将未计算其过去的input_ids作为input_ids传递。

    可以使用AutoImageProcessor获取索引。详情请参见ImageGPTImageProcessor.call()

  • past_key_values (Tuple[Tuple[torch.Tensor]] 长度为 config.n_layers) — 包含模型计算的预计算隐藏状态(注意力块中的键和值)(参见下面的 past_key_values 输出)。可用于加速顺序解码。已经将其过去状态提供给此模型的 input_ids 不应再作为 input_ids 传递,因为它们已经被计算过了。
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果使用了past_key_values,可以选择只输入最后的inputs_embeds(参见past_key_values)。

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor 形状为 (batch_size,), 可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutputWithPast 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含根据配置(ImageGPTConfig)和输入的各种元素。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 分类(或回归,如果 config.num_labels==1)损失。

  • logits (torch.FloatTensor 形状为 (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量。

    包含预先计算的隐藏状态(自注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)。

    模型在每层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每层一个)。

    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

ImageGPTForImageClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoImageProcessor, ImageGPTForImageClassification
>>> from PIL import Image
>>> import requests

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> image_processor = AutoImageProcessor.from_pretrained("openai/imagegpt-small")
>>> model = ImageGPTForImageClassification.from_pretrained("openai/imagegpt-small")

>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
< > Update on GitHub