Transformers 文档

I-JEPA

I-JEPA

概述

I-JEPA模型由Mahmoud Assran、Quentin Duval、Ishan Misra、Piotr Bojanowski、Pascal Vincent、Michael Rabbat、Yann LeCun和Nicolas Ballas在基于图像的联合嵌入预测架构中提出。 I-JEPA是一种自监督学习方法,它基于同一图像的其他部分预测图像某一部分的表示。这种方法专注于学习语义特征,而不依赖于手工数据转换中预定义的不变性,这些不变性可能会偏向特定任务,也不依赖于填充像素级细节,这通常会导致表示的意义不大。

论文的摘要如下:

本文展示了一种不依赖手工制作的数据增强来学习高度语义图像表示的方法。我们引入了基于图像的联合嵌入预测架构(I-JEPA),这是一种从图像中进行自监督学习的非生成方法。I-JEPA背后的想法很简单:从单个上下文块中预测同一图像中各种目标块的表示。引导I-JEPA生成语义表示的核心设计选择是掩码策略;具体来说,关键是要(a)采样具有足够大规模(语义)的目标块,并且(b)使用足够信息丰富(空间分布)的上下文块。经验表明,当与视觉变换器结合时,我们发现I-JEPA具有高度可扩展性。例如,我们在ImageNet上使用16个A100 GPU在不到72小时内训练了一个ViT-Huge/14,以在从线性分类到对象计数和深度预测的广泛任务中实现强大的下游性能。

该模型由jmtzt贡献。 原始代码可以在这里找到。

如何使用

以下是使用此模型进行图像特征提取的方法:

import requests
import torch
from PIL import Image
from torch.nn.functional import cosine_similarity

from transformers import AutoModel, AutoProcessor

url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
url_2 = "http://images.cocodataset.org/val2017/000000219578.jpg"
image_1 = Image.open(requests.get(url_1, stream=True).raw)
image_2 = Image.open(requests.get(url_2, stream=True).raw)

model_id = "jmtzt/ijepa_vith14_1k"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModel.from_pretrained(model_id)

@torch.no_grad()
def infer(image):
    inputs = processor(image, return_tensors="pt")
    outputs = model(**inputs)
    return outputs.last_hidden_state.mean(dim=1)


embed_1 = infer(image_1)
embed_2 = infer(image_2)

similarity = cosine_similarity(embed_1, embed_2)
print(similarity)

IJepaConfig

transformers.IJepaConfig

< >

( hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.0 attention_probs_dropout_prob = 0.0 initializer_range = 0.02 layer_norm_eps = 1e-12 image_size = 224 patch_size = 16 num_channels = 3 qkv_bias = True **kwargs )

参数

  • hidden_size (int, optional, 默认为 768) — 编码器层和池化层的维度。
  • num_hidden_layers (int, optional, 默认为 12) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, optional, defaults to 12) — Transformer编码器中每个注意力层的注意力头数量。
  • intermediate_size (int, optional, 默认为 3072) — Transformer 编码器中“中间”(即前馈)层的维度。
  • hidden_act (strfunction, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持 "gelu""relu""selu""gelu_new"
  • hidden_dropout_prob (float, optional, 默认为 0.0) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, optional, defaults to 0.0) — 注意力概率的丢弃比率。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • layer_norm_eps (float, optional, defaults to 1e-12) — 层归一化层使用的epsilon值。
  • image_size (int, optional, 默认为 224) — 每张图片的大小(分辨率)。
  • patch_size (int, optional, defaults to 16) — 每个补丁的大小(分辨率)。
  • num_channels (int, optional, defaults to 3) — 输入通道的数量。
  • qkv_bias (bool, optional, defaults to True) — 是否向查询、键和值添加偏置。

这是用于存储IJepaModel配置的配置类。它用于根据指定的参数实例化IJEPA模型,定义模型架构。使用默认值实例化配置将产生类似于I-JEPA google/ijepa-base-patch16-224架构的配置。

配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。

示例:

>>> from transformers import IJepaConfig, IJepaModel

>>> # Initializing a IJEPA ijepa-base-patch16-224 style configuration
>>> configuration = IJepaConfig()

>>> # Initializing a model (with random weights) from the ijepa-base-patch16-224 style configuration
>>> model = IJepaModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

IJepaModel

transformers.IJepaModel

< >

( config: IJepaConfig add_pooling_layer: bool = False use_mask_token: bool = False )

参数

  • config (IJepaConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的IJepa模型转换器输出原始隐藏状态,没有任何特定的头部。 这个模型是一个PyTorch torch.nn.Module 子类。将其用作常规的PyTorch模块,并参考PyTorch文档以获取与一般使用和行为相关的所有事项。

前进

< >

( pixel_values: typing.Optional[torch.Tensor] = None bool_masked_pos: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPoolingtuple(torch.FloatTensor)

参数

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — 像素值。像素值可以使用AutoImageProcessor获取。详情请参见IJepaImageProcessor.__call__
  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • interpolate_pos_encoding (bool, optional) — 是否插值预训练的位置编码.
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • bool_masked_pos (torch.BoolTensor of shape (batch_size, num_patches), optional) — 布尔掩码位置。指示哪些补丁被掩码(1)和哪些没有被掩码(0)。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPooling 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(IJepaConfig)和输入。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • pooler_output (torch.FloatTensor 形状为 (batch_size, hidden_size)) — 序列的第一个标记(分类标记)在经过用于辅助预训练任务的层进一步处理后的最后一层隐藏状态。例如,对于BERT系列模型,这返回经过线性层和tanh激活函数处理后的分类标记。线性层的权重是在预训练期间通过下一个句子预测(分类)目标进行训练的。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力softmax后的注意力权重,用于计算自注意力头中的加权平均值。

IJepaModel 的 forward 方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoImageProcessor, IJepaModel
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("facebook/ijepa_vith14_1k")
>>> model = IJepaModel.from_pretrained("facebook/ijepa_vith14_1k")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 197, 768]

IJepaForImageClassification

transformers.IJepaForImageClassification

< >

( config: IJepaConfig )

参数

  • config (IJepaConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

IJepa 模型转换器,顶部带有图像分类头(在最终隐藏状态之上的线性层),例如用于 ImageNet。

请注意,通过在模型的前向传播中将interpolate_pos_encoding设置为True,可以在比训练时更高分辨率的图像上微调IJepa。这将把预训练的位置嵌入插值到更高的分辨率。

该模型是一个PyTorch torch.nn.Module 子类。将其用作常规的PyTorch模块,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( pixel_values: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.ImageClassifierOutputtuple(torch.FloatTensor)

参数

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — 像素值。像素值可以使用AutoImageProcessor获取。详情请参见IJepaImageProcessor.__call__
  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • interpolate_pos_encoding (bool, optional) — 是否插值预训练的位置编码.
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算图像分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.ImageClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.ImageClassifierOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(IJepaConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 分类(或回归,如果 config.num_labels==1)损失。

  • logits (torch.FloatTensor 形状为 (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每个阶段的输出)形状为 (batch_size, sequence_length, hidden_size)。模型在每个阶段输出的隐藏状态 (也称为特征图)。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每个层一个)形状为 (batch_size, num_heads, patch_size, sequence_length)

    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

IJepaForImageClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoImageProcessor, IJepaForImageClassification
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("google/ijepa-base-patch16-224")
>>> model = IJepaForImageClassification.from_pretrained("google/ijepa-base-patch16-224")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
Egyptian cat
< > Update on GitHub