Transformers 文档

YOLOS

YOLOS

概述

YOLOS模型由Yuxin Fang、Bencheng Liao、Xinggang Wang、Jiemin Fang、Jiyang Qi、Rui Wu、Jianwei Niu、Wenyu Liu在《You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection》中提出。 YOLOS提出仅利用普通的Vision Transformer (ViT)进行目标检测,灵感来源于DETR。结果表明,仅使用基础大小的编码器Transformer也可以在COCO上达到42 AP,与DETR和更复杂的框架如Faster R-CNN相当。

论文的摘要如下:

Transformer 能否从纯序列到序列的角度,以最少的关于二维空间结构的知识,执行二维对象和区域级别的识别?为了回答这个问题,我们提出了 You Only Look at One Sequence (YOLOS),这是一系列基于原始 Vision Transformer 的对象检测模型,具有最少的修改、区域先验以及目标任务的归纳偏差。我们发现,仅在中型 ImageNet-1k 数据集上预训练的 YOLOS 已经在具有挑战性的 COCO 对象检测基准上取得了相当有竞争力的性能,例如,直接从 BERT-Base 架构采用的 YOLOS-Base 可以在 COCO val 上获得 42.0 的 box AP。我们还通过 YOLOS 讨论了当前预训练方案和模型扩展策略对视觉中 Transformer 的影响和局限性。

drawing YOLOS architecture. Taken from the original paper.

该模型由nielsr贡献。原始代码可以在这里找到。

使用缩放点积注意力 (SDPA)

PyTorch 包含一个原生的缩放点积注意力(SDPA)操作符,作为 torch.nn.functional 的一部分。这个函数 包含了几种实现,可以根据输入和使用的硬件进行应用。更多信息请参阅 官方文档GPU 推理 页面。

默认情况下,当有可用实现时,SDPA 用于 torch>=2.1.1,但你也可以在 from_pretrained() 中设置 attn_implementation="sdpa" 来明确请求使用 SDPA。

from transformers import AutoModelForObjectDetection
model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-base", attn_implementation="sdpa", torch_dtype=torch.float16)
...

为了获得最佳加速效果,我们建议以半精度加载模型(例如 torch.float16torch.bfloat16)。

在本地基准测试(A100-40GB,PyTorch 2.3.0,操作系统 Ubuntu 22.04)中,使用float32hustvl/yolos-base模型,我们在推理过程中看到了以下加速效果。

批量大小 平均推理时间(毫秒),eager模式 平均推理时间(毫秒),sdpa模型 加速比,Sdpa / Eager(倍)
1 106 76 1.39
2 154 90 1.71
4 222 116 1.91
8 368 168 2.19

资源

一份官方的 Hugging Face 和社区(由🌎表示)资源列表,帮助您开始使用 YOLOS。

Object Detection

如果您有兴趣提交资源以包含在此处,请随时打开一个 Pull Request,我们将进行审核!理想情况下,资源应展示一些新内容,而不是重复现有资源。

使用 YolosImageProcessor 来为模型准备图像(以及可选的目标)。与 DETR 不同,YOLOS 不需要创建 pixel_mask

YolosConfig

transformers.YolosConfig

< >

( hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.0 attention_probs_dropout_prob = 0.0 initializer_range = 0.02 layer_norm_eps = 1e-12 image_size = [512, 864] patch_size = 16 num_channels = 3 qkv_bias = True num_detection_tokens = 100 use_mid_position_embeddings = True auxiliary_loss = False class_cost = 1 bbox_cost = 5 giou_cost = 2 bbox_loss_coefficient = 5 giou_loss_coefficient = 2 eos_coefficient = 0.1 **kwargs )

参数

  • hidden_size (int, optional, 默认为 768) — 编码器层和池化层的维度。
  • num_hidden_layers (int, 可选, 默认为 12) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, optional, defaults to 12) — Transformer编码器中每个注意力层的注意力头数。
  • intermediate_size (int, optional, 默认为 3072) — Transformer 编码器中“中间”(即前馈)层的维度。
  • hidden_act (strfunction, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持 "gelu""relu""selu""gelu_new"
  • hidden_dropout_prob (float, optional, 默认为 0.0) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, optional, 默认为 0.0) — 注意力概率的丢弃比率。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • layer_norm_eps (float, 可选, 默认为 1e-12) — 层归一化层使用的 epsilon 值。
  • image_size (List[int], 可选, 默认为 [512, 864]) — 每张图像的尺寸(分辨率)。
  • patch_size (int, 可选, 默认为 16) — 每个补丁的大小(分辨率)。
  • num_channels (int, optional, defaults to 3) — 输入通道的数量。
  • qkv_bias (bool, optional, defaults to True) — 是否向查询、键和值添加偏置。
  • num_detection_tokens (int, optional, 默认为 100) — 检测令牌的数量。
  • use_mid_position_embeddings (bool, optional, defaults to True) — 是否使用中间层位置编码.
  • auxiliary_loss (bool, 可选, 默认为 False) — 是否使用辅助解码损失(每个解码器层的损失)。
  • class_cost (float, optional, defaults to 1) — 匈牙利匹配成本中分类错误的相对权重。
  • bbox_cost (float, optional, defaults to 5) — 匈牙利匹配成本中边界框坐标的L1误差的相对权重。
  • giou_cost (float, optional, 默认为 2) — 在匈牙利匹配成本中,边界框的广义 IoU 损失的相对权重。
  • bbox_loss_coefficient (float, optional, defaults to 5) — 在目标检测损失中,L1边界框损失的相对权重。
  • giou_loss_coefficient (float, optional, defaults to 2) — 在目标检测损失中,广义IoU损失的相对权重。
  • eos_coefficient (float, optional, defaults to 0.1) — 在目标检测损失中,‘无对象’类的相对分类权重。

这是用于存储YolosModel配置的配置类。它用于根据指定的参数实例化YOLOS模型,定义模型架构。使用默认值实例化配置将产生类似于YOLOS hustvl/yolos-base架构的配置。

配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。

示例:

>>> from transformers import YolosConfig, YolosModel

>>> # Initializing a YOLOS hustvl/yolos-base style configuration
>>> configuration = YolosConfig()

>>> # Initializing a model (with random weights) from the hustvl/yolos-base style configuration
>>> model = YolosModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

YolosImageProcessor

transformers.YolosImageProcessor

< >

( format: typing.Union[str, transformers.image_utils.AnnotationFormat] = do_resize: bool = True size: typing.Dict[str, int] = None resample: Resampling = do_rescale: bool = True rescale_factor: typing.Union[int, float] = 0.00392156862745098 do_normalize: bool = True image_mean: typing.Union[float, typing.List[float]] = None image_std: typing.Union[float, typing.List[float]] = None do_convert_annotations: typing.Optional[bool] = None do_pad: bool = True pad_size: typing.Optional[typing.Dict[str, int]] = None **kwargs )

参数

  • format (str, optional, defaults to "coco_detection") — 注释的数据格式。可选值为“coco_detection”或“coco_panoptic”。
  • do_resize (bool, 可选, 默认为 True) — 控制是否将图像的(高度,宽度)尺寸调整为指定的 size。可以在 preprocess 方法中通过 do_resize 参数进行覆盖。
  • size (Dict[str, int] optional, defaults to {"shortest_edge" -- 800, "longest_edge": 1333}): Size of the image’s (height, width) dimensions after resizing. Can be overridden by the size parameter in the preprocess method. Available options are:
    • {"height": int, "width": int}: The image will be resized to the exact size (height, width). Do NOT keep the aspect ratio.
    • {"shortest_edge": int, "longest_edge": int}: The image will be resized to a maximum size respecting the aspect ratio and keeping the shortest edge less or equal to shortest_edge and the longest edge less or equal to longest_edge.
    • {"max_height": int, "max_width": int}: The image will be resized to the maximum size respecting the aspect ratio and keeping the height less or equal to max_height and the width less or equal to max_width.
  • resample (PILImageResampling, 可选, 默认为 PILImageResampling.BILINEAR) — 如果调整图像大小,则使用的重采样过滤器。
  • do_rescale (bool, 可选, 默认为 True) — 控制是否通过指定的比例 rescale_factor 重新缩放图像。可以在 preprocess 方法中通过 do_rescale 参数覆盖此设置。
  • rescale_factor (intfloat, 可选, 默认为 1/255) — 如果重新缩放图像,则使用的缩放因子。可以在 preprocess 方法中通过 rescale_factor 参数覆盖此值。
  • do_normalize — 控制是否对图像进行归一化。可以在preprocess方法中通过do_normalize参数进行覆盖。
  • image_mean (floatList[float], 可选, 默认为 IMAGENET_DEFAULT_MEAN) — 在标准化图像时使用的均值。可以是单个值或一个值列表,每个通道一个值。可以在 preprocess 方法中通过 image_mean 参数覆盖。
  • image_std (floatList[float], 可选, 默认为 IMAGENET_DEFAULT_STD) — 用于图像归一化的标准差值。可以是单个值或一个值列表,每个通道一个值。可以通过 preprocess 方法中的 image_std 参数进行覆盖。
  • do_pad (bool, 可选, 默认为 True) — 控制是否对图像进行填充。可以通过 preprocess 方法中的 do_pad 参数进行覆盖。如果为 True,图像将在底部和右侧用零进行填充。 如果提供了 pad_size,图像将被填充到指定的尺寸。 否则,图像将被填充到批次中的最大高度和宽度。
  • pad_size (Dict[str, int], optional) — 图像填充的大小 {"height": int, "width" int}。必须大于任何预处理提供的图像大小。 如果未提供 pad_size,图像将被填充到批次中最大的高度和宽度。

构建一个Detr图像处理器。

预处理

< >

( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[ForwardRef('PIL.Image.Image')], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]] annotations: typing.Union[typing.Dict[str, typing.Union[int, str, typing.List[typing.Dict]]], typing.List[typing.Dict[str, typing.Union[int, str, typing.List[typing.Dict]]]], NoneType] = None return_segmentation_masks: bool = None masks_path: typing.Union[str, pathlib.Path, NoneType] = None do_resize: typing.Optional[bool] = None size: typing.Optional[typing.Dict[str, int]] = None resample = None do_rescale: typing.Optional[bool] = None rescale_factor: typing.Union[int, float, NoneType] = None do_normalize: typing.Optional[bool] = None image_mean: typing.Union[float, typing.List[float], NoneType] = None image_std: typing.Union[float, typing.List[float], NoneType] = None do_convert_annotations: typing.Optional[bool] = None do_pad: typing.Optional[bool] = None format: typing.Union[str, transformers.image_utils.AnnotationFormat, NoneType] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None data_format: typing.Union[str, transformers.image_utils.ChannelDimension] = input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None pad_size: typing.Optional[typing.Dict[str, int]] = None **kwargs )

参数

  • images (ImageInput) — 要预处理的图像或图像批次。期望输入单个或批次的图像,像素值范围从0到255。如果传入的图像的像素值在0到1之间,请设置do_rescale=False.
  • annotations (AnnotationType or List[AnnotationType], optional) — List of annotations associated with the image or batch of images. If annotation is for object detection, the annotations should be a dictionary with the following keys:
    • “image_id” (int): The image id.
    • “annotations” (List[Dict]): List of annotations for an image. Each annotation should be a dictionary. An image can have no annotations, in which case the list should be empty. If annotation is for segmentation, the annotations should be a dictionary with the following keys:
    • “image_id” (int): The image id.
    • “segments_info” (List[Dict]): List of segments for an image. Each segment should be a dictionary. An image can have no segments, in which case the list should be empty.
    • “file_name” (str): The file name of the image.
  • return_segmentation_masks (bool, optional, defaults to self.return_segmentation_masks) — 是否返回分割掩码。
  • masks_path (strpathlib.Path, 可选) — 包含分割掩码的目录路径。
  • do_resize (bool, optional, defaults to self.do_resize) — 是否调整图像大小.
  • size (Dict[str, int], optional, defaults to self.size) — Size of the image’s (height, width) dimensions after resizing. Available options are:
    • {"height": int, "width": int}: The image will be resized to the exact size (height, width). Do NOT keep the aspect ratio.
    • {"shortest_edge": int, "longest_edge": int}: The image will be resized to a maximum size respecting the aspect ratio and keeping the shortest edge less or equal to shortest_edge and the longest edge less or equal to longest_edge.
    • {"max_height": int, "max_width": int}: The image will be resized to the maximum size respecting the aspect ratio and keeping the height less or equal to max_height and the width less or equal to max_width.
  • resample (PILImageResampling, optional, defaults to self.resample) — 调整图像大小时使用的重采样过滤器。
  • do_rescale (bool, optional, defaults to self.do_rescale) — 是否对图像进行重新缩放.
  • rescale_factor (float, optional, defaults to self.rescale_factor) — 在重新缩放图像时使用的重新缩放因子。
  • do_normalize (bool, optional, defaults to self.do_normalize) — 是否对图像进行归一化处理。
  • image_mean (floatList[float], 可选, 默认为 self.image_mean) — 在标准化图像时使用的均值.
  • image_std (float or List[float], optional, defaults to self.image_std) — 用于标准化图像时的标准差。
  • do_convert_annotations (bool, 可选, 默认为 self.do_convert_annotations) — 是否将注释转换为模型期望的格式。将边界框从格式 (top_left_x, top_left_y, width, height) 转换为 (center_x, center_y, width, height) 并转换为相对坐标。
  • do_pad (bool, 可选, 默认为 self.do_pad) — 是否对图像进行填充。如果为 True,将在图像的底部和右侧用零进行填充。如果提供了 pad_size,图像将被填充到指定的尺寸。否则,图像将被填充到批次中的最大高度和宽度。
  • format (strAnnotationFormat, 可选, 默认为 self.format) — 注释的格式。
  • return_tensors (strTensorType, 可选, 默认为 self.return_tensors) — 返回的张量类型。如果为 None,将返回图像列表。
  • data_format (strChannelDimension, 可选, 默认为 self.data_format) — 图像的通道维度格式。如果未提供,将与输入图像相同。
  • input_data_format (ChannelDimensionstr, 可选) — 输入图像的通道维度格式。如果未设置,则从输入图像推断通道维度格式。可以是以下之一:
    • "channels_first"ChannelDimension.FIRST: 图像格式为 (num_channels, height, width)。
    • "channels_last"ChannelDimension.LAST: 图像格式为 (height, width, num_channels)。
    • "none"ChannelDimension.NONE: 图像格式为 (height, width)。
  • pad_size (Dict[str, int], 可选) — 图像填充的大小 {"height": int, "width" int}。必须大于任何预处理提供的图像大小。 如果未提供 pad_size,图像将被填充到批次中最大的高度和宽度。

预处理一张图像或一批图像,以便模型可以使用。

pad

< >

( images: typing.List[numpy.ndarray] annotations: typing.Optional[typing.List[typing.Dict[str, typing.Any]]] = None constant_values: typing.Union[float, typing.Iterable[float]] = 0 return_pixel_mask: bool = False return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None data_format: typing.Optional[transformers.image_utils.ChannelDimension] = None input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None update_bboxes: bool = True pad_size: typing.Optional[typing.Dict[str, int]] = None )

参数

  • image (np.ndarray) — 要填充的图像。
  • annotations (List[Dict[str, any]], optional) — 与图像一起填充的注释。如果提供,边界框将更新以匹配填充后的图像。
  • constant_values (floatIterable[float], 可选) — 如果 mode"constant",则用于填充的值。
  • return_pixel_mask (bool, optional, defaults to True) — 是否返回像素掩码。
  • return_tensors (strTensorType, 可选) — 返回的张量类型。可以是以下之一:
    • 未设置:返回一个 np.ndarray 列表。
    • TensorType.TENSORFLOW'tf':返回一个类型为 tf.Tensor 的批次。
    • TensorType.PYTORCH'pt':返回一个类型为 torch.Tensor 的批次。
    • TensorType.NUMPY'np':返回一个类型为 np.ndarray 的批次。
    • TensorType.JAX'jax':返回一个类型为 jax.numpy.ndarray 的批次。
  • data_format (strChannelDimension, 可选) — 图像的通道维度格式。如果未提供,将与输入图像相同。
  • input_data_format (ChannelDimensionstr, 可选) — 输入图像的通道维度格式。如果未提供,将会自动推断。
  • update_bboxes (bool, 可选, 默认为 True) — 是否更新注释中的边界框以匹配填充后的图像。如果边界框尚未转换为相对坐标和(centre_x, centre_y, width, height)格式,则边界框将不会更新。
  • pad_size (Dict[str, int], 可选) — 图像填充的大小 {"height": int, "width" int}。必须大于预处理中提供的任何图像大小。 如果未提供 pad_size,图像将被填充到批次中最大的高度和宽度。

将一批图像用零填充到图像的底部和右侧,使其达到批次中最大高度和宽度的尺寸,并可选择返回其相应的像素掩码。

post_process_object_detection

< >

( outputs threshold: float = 0.5 target_sizes: typing.Union[transformers.utils.generic.TensorType, typing.List[typing.Tuple]] = None ) List[Dict]

参数

  • 输出 (YolosObjectDetectionOutput) — 模型的原始输出。
  • threshold (float, optional) — 用于保留对象检测预测的分数阈值。
  • target_sizes (torch.TensorList[Tuple[int, int]], 可选) — 形状为 (batch_size, 2) 的张量或包含批次中每个图像目标大小的元组列表 (Tuple[int, int]) (height, width)。如果未设置,预测结果将不会调整大小。

返回

List[Dict]

一个字典列表,每个字典包含模型预测的批次中每张图像的分数、标签和框。

YolosForObjectDetection的原始输出转换为最终边界框,格式为(左上角x,左上角y,右下角x,右下角y)。仅支持PyTorch。

YolosFeatureExtractor

transformers.YolosFeatureExtractor

< >

( *args **kwargs )

__call__

< >

( images **kwargs )

预处理一张图像或一批图像。

pad

< >

( images: typing.List[numpy.ndarray] annotations: typing.Optional[typing.List[typing.Dict[str, typing.Any]]] = None constant_values: typing.Union[float, typing.Iterable[float]] = 0 return_pixel_mask: bool = False return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None data_format: typing.Optional[transformers.image_utils.ChannelDimension] = None input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None update_bboxes: bool = True pad_size: typing.Optional[typing.Dict[str, int]] = None )

参数

  • image (np.ndarray) — 要填充的图像.
  • annotations (List[Dict[str, any]], optional) — 与图像一起填充的注释。如果提供,边界框将更新以匹配填充后的图像。
  • constant_values (floatIterable[float], 可选) — 如果 mode"constant",则用于填充的值。
  • return_pixel_mask (bool, optional, defaults to True) — 是否返回像素掩码。
  • return_tensors (strTensorType, 可选) — 返回的张量类型。可以是以下之一:
    • 未设置:返回一个 np.ndarray 列表。
    • TensorType.TENSORFLOW'tf':返回一个类型为 tf.Tensor 的批次。
    • TensorType.PYTORCH'pt':返回一个类型为 torch.Tensor 的批次。
    • TensorType.NUMPY'np':返回一个类型为 np.ndarray 的批次。
    • TensorType.JAX'jax':返回一个类型为 jax.numpy.ndarray 的批次。
  • data_format (strChannelDimension, 可选) — 图像的通道维度格式。如果未提供,将与输入图像相同。
  • input_data_format (ChannelDimensionstr, 可选) — 输入图像的通道维度格式。如果未提供,将自动推断。
  • update_bboxes (bool, 可选, 默认为 True) — 是否更新注释中的边界框以匹配填充后的图像。如果 边界框尚未转换为相对坐标和 (centre_x, centre_y, width, height) 格式,边界框将不会被更新。
  • pad_size (Dict[str, int], 可选) — 图像填充的大小 {"height": int, "width" int}。必须大于预处理中提供的任何图像大小。 如果未提供 pad_size,图像将被填充到批次中最大的高度和宽度。

将一批图像用零填充到图像的底部和右侧,使其达到批次中最大高度和宽度的尺寸,并可选择返回其相应的像素掩码。

post_process_object_detection

< >

( outputs threshold: float = 0.5 target_sizes: typing.Union[transformers.utils.generic.TensorType, typing.List[typing.Tuple]] = None ) List[Dict]

参数

  • 输出 (YolosObjectDetectionOutput) — 模型的原始输出。
  • threshold (float, optional) — 用于保留对象检测预测的分数阈值。
  • target_sizes (torch.TensorList[Tuple[int, int]], 可选) — 形状为 (batch_size, 2) 的张量或包含批次中每个图像目标大小的元组列表 (Tuple[int, int]) (height, width)。如果未设置,预测结果将不会调整大小。

返回

List[Dict]

一个字典列表,每个字典包含模型预测的批次中每张图像的分数、标签和框。

YolosForObjectDetection的原始输出转换为最终边界框,格式为(左上角x,左上角y,右下角x,右下角y)。仅支持PyTorch。

YolosModel

transformers.YolosModel

< >

( config: YolosConfig add_pooling_layer: bool = True )

参数

  • config (YolosConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的YOLOS模型变压器输出原始隐藏状态,没有任何特定的头部。 这个模型是一个PyTorch torch.nn.Module 子类。将其用作常规的PyTorch模块,并参考PyTorch文档以获取与一般使用和行为相关的所有事项。

前进

< >

( pixel_values: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPoolingtuple(torch.FloatTensor)

参数

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — 像素值。像素值可以使用AutoImageProcessor获取。详情请参见 YolosImageProcessor.call().
  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPooling 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(YolosConfig)和输入。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • pooler_output (torch.FloatTensor 形状为 (batch_size, hidden_size)) — 序列的第一个标记(分类标记)在经过用于辅助预训练任务的层进一步处理后的最后一层隐藏状态。例如,对于BERT系列模型,这返回经过线性层和tanh激活函数处理后的分类标记。线性层的权重是在预训练期间通过下一个句子预测(分类)目标训练的。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力softmax后的注意力权重,用于计算自注意力头中的加权平均值。

YolosModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoImageProcessor, YolosModel
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("hustvl/yolos-small")
>>> model = YolosModel.from_pretrained("hustvl/yolos-small")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 3401, 384]

YolosForObjectDetection

transformers.YolosForObjectDetection

< >

( config: YolosConfig )

参数

  • config (YolosConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

YOLOS模型(由ViT编码器组成)在顶部带有目标检测头,用于诸如COCO检测等任务。

该模型是一个PyTorch torch.nn.Module 子类。将其用作常规的PyTorch模块,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( pixel_values: FloatTensor labels: typing.Optional[typing.List[typing.Dict]] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.models.yolos.modeling_yolos.YolosObjectDetectionOutputtuple(torch.FloatTensor)

参数

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — 像素值。像素值可以使用AutoImageProcessor获取。详情请参见 YolosImageProcessor.call().
  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (List[Dict] 长度为 (batch_size,), 可选) — 用于计算二分匹配损失的标签。字典列表,每个字典至少包含以下2个键:'class_labels''boxes'(分别是批次中图像的类别标签和边界框)。类别标签本身应为长度为 (图像中边界框的数量,)torch.LongTensor,而边界框应为形状为 (图像中边界框的数量, 4)torch.FloatTensor

返回

transformers.models.yolos.modeling_yolos.YolosObjectDetectionOutputtuple(torch.FloatTensor)

一个 transformers.models.yolos.modeling_yolos.YolosObjectDetectionOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含根据配置(YolosConfig)和输入的各种元素。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 总损失,作为类别预测的负对数似然(交叉熵)和边界框损失的线性组合。后者定义为 L1 损失和广义尺度不变 IoU 损失的线性组合。
  • loss_dict (Dict可选) — 包含各个损失的字典。用于记录日志。
  • logits (torch.FloatTensor 形状为 (batch_size, num_queries, num_classes + 1)) — 所有查询的分类 logits(包括无对象)。
  • pred_boxes (torch.FloatTensor 形状为 (batch_size, num_queries, 4)) — 所有查询的归一化框坐标,表示为 (center_x, center_y, width, height)。这些值在 [0, 1] 范围内归一化,相对于批次中每个单独图像的大小(忽略可能的填充)。您可以使用 post_process() 来检索未归一化的边界框。
  • auxiliary_outputs (list[Dict]可选) — 可选,仅在激活辅助损失时返回(即 config.auxiliary_loss 设置为 True)并且提供了标签。它是一个字典列表,包含每个解码器层的上述两个键(logitspred_boxes)。
  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 模型解码器最后一层输出的隐藏状态序列。
  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)。模型每层输出的隐藏状态加上可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

YolosForObjectDetection 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoImageProcessor, AutoModelForObjectDetection
>>> import torch
>>> from PIL import Image
>>> import requests

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> image_processor = AutoImageProcessor.from_pretrained("hustvl/yolos-tiny")
>>> model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny")

>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)

>>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
>>> target_sizes = torch.tensor([image.size[::-1]])
>>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[
...     0
... ]

>>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
...     box = [round(i, 2) for i in box.tolist()]
...     print(
...         f"Detected {model.config.id2label[label.item()]} with confidence "
...         f"{round(score.item(), 3)} at location {box}"
...     )
Detected remote with confidence 0.991 at location [46.48, 72.78, 178.98, 119.3]
Detected remote with confidence 0.908 at location [336.48, 79.27, 368.23, 192.36]
Detected cat with confidence 0.934 at location [337.18, 18.06, 638.14, 373.09]
Detected cat with confidence 0.979 at location [10.93, 53.74, 313.41, 470.67]
Detected remote with confidence 0.974 at location [41.63, 72.23, 178.09, 119.99]
< > Update on GitHub